Suppr超能文献

利用新兴增材制造技术的潜力,使其成为化学和生物传感创新的变革者。

Harnessing the potential of emerging additive manufacturing technologies as a game-changer for chemical and biosensing innovations.

作者信息

Kalkal Ashish, Yadav Amit K, Verma Damini, Sehgal Abhishek, Packirisamy Gopinath, Bhatia Dhiraj

机构信息

Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.

iHub Divyasmapark, Technology Innovation Hub, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.

出版信息

Rep Prog Phys. 2025 Aug 14;88(8). doi: 10.1088/1361-6633/adf7ba.

Abstract

Over the past four decades, additive manufacturing (AM), particularly three-dimensional (3D) printing, has emerged as a transformative force in chemical and biosensing technologies, revolutionizing prototyping and production across laboratories and industries. Recent advancements in 3D printing techniques and materials have accelerated the development of novel sensors for diverse applications, offering unparalleled advantages such as rapid prototyping, customization, and cost efficiency. Unlike traditional fabrication methods, 3D printing creates intricate, high-precision structures while reducing multi-step processes, making it ideal for biosensing applications. Its interdisciplinary potential spans physics, chemistry, engineering, biology, and medicine, positioning it as a transformative tool in biomedical applications, including biosensing. Despite its remarkable promises, some challenges such as limited multi-material integration, standardization hurdles, resolution constraints, biocompatibility concerns, and scalability issues persist. Addressing these gaps through interdisciplinary collaboration could unlock the full potential of AM-enabled sensing devices. This review critically evaluates the evolution and latest progress in AM technologies, including fused deposition modeling, stereolithography, and inkjet printing for designing sensitive, customizable, and affordable biosensing platforms and devices. Additionally, this article explores recent innovations in 3D-printed chemical and biological sensors, analyzing their performance in detecting various analytes. A comprehensive summary of cutting-edge developments is provided, alongside an examination of future directions for refining and inventing 3D printing techniques in biosensing applications. Finally, the review highlights current challenges and opportunities in 3D-printed sensing devices, emphasizing the need for material optimization, improved printing resolution, and enhanced device functionality. By overcoming these barriers, 3D printing can serve as a cornerstone for next-generation diagnostic platforms, driving innovation in chemical and biosensing technologies. This review underscores AM's transformative role as a catalyst for future breakthroughs in the field.

摘要

在过去的四十年里,增材制造(AM),尤其是三维(3D)打印,已成为化学和生物传感技术中的变革力量,彻底改变了实验室和行业的原型制作及生产方式。3D打印技术和材料的最新进展加速了适用于各种应用的新型传感器的开发,提供了诸如快速原型制作、定制化和成本效益等无与伦比的优势。与传统制造方法不同,3D打印能够创建复杂的高精度结构,同时减少多步骤流程,使其成为生物传感应用的理想选择。其跨学科潜力涵盖物理、化学、工程、生物学和医学,使其成为生物医学应用(包括生物传感)中的变革性工具。尽管有显著的前景,但一些挑战仍然存在,如多材料集成有限、标准化障碍、分辨率限制、生物相容性问题和可扩展性问题。通过跨学科合作解决这些差距可以释放增材制造传感设备的全部潜力。本综述批判性地评估了增材制造技术的发展历程和最新进展,包括熔融沉积建模、立体光刻和喷墨打印,以设计灵敏、可定制且经济实惠的生物传感平台和设备。此外,本文还探讨了3D打印化学和生物传感器的最新创新,分析了它们在检测各种分析物方面的性能。提供了前沿发展的全面总结,同时审视了生物传感应用中3D打印技术的改进和创新的未来方向。最后,该综述强调了3D打印传感设备当前的挑战和机遇,强调了材料优化、提高打印分辨率和增强设备功能的必要性。通过克服这些障碍,3D打印可以成为下一代诊断平台的基石,推动化学和生物传感技术的创新。本综述强调了增材制造作为该领域未来突破催化剂的变革性作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验