Suppr超能文献

影响非洲粮食安全关系的温室气体来源的机器学习分析

Machine learning analysis of greenhouse gas sources impacting Africa's food security nexus.

作者信息

Bofa Adusei, Zewotir Temesgen

机构信息

School of Business and Applied Sciences, Garden City University College, Kumasi, Ghana.

School of Mathematics, Statistics, and Computer Science, University of KwaZulu Natal, Westville campus, Oliver Tambo Building, Durban, South Africa.

出版信息

Sci Rep. 2025 Aug 6;15(1):28665. doi: 10.1038/s41598-025-14766-7.

Abstract

The essential need to identify the most informative sources of greenhouse gas emissions (climate change drivers) impacting the food security nexus in Africa requires a comprehensive and holistic approach. Machine learning method excels in the identification of single-variable importance, our study complements their abilities by deriving principal components using principal component analysis (PCA) to give a significant understanding of the three primary greenhouse gases (carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O)). We used data from FAO concerning Africa from 2000 to 2021. Food household consumption emission (CH₄), burning crop residues (N₂O), and food transport (N₂O) are the key variables identified by machine learning as critical contributors to climate change drivers impacting food security. Biomass-burning emissions factor, land management emissions factor, and food supply chain emissions factor are the key principal components after subjecting the 86 to PCA. Focusing on the variables and the factors revealed by the extreme gradient, random forest, and PCA can help stakeholders develop efficient practices like promoting sustainable crop residue management and a sustainable food system that reduces post-harvest loss. Our study did not consider the potential impact of spatial effect in the identification of the key sources of greenhouse gases impacting food security, we will explore this in future works.

摘要

要确定影响非洲粮食安全关系的最具信息价值的温室气体排放源(气候变化驱动因素),就需要采取全面且整体的方法。机器学习方法擅长识别单变量的重要性,我们的研究通过主成分分析(PCA)得出主成分来补充其能力,以便深入了解三种主要温室气体(二氧化碳(CO₂)、甲烷(CH₄)和一氧化二氮(N₂O))。我们使用了联合国粮食及农业组织(FAO)2000年至2021年有关非洲的数据。家庭食物消费排放(CH₄)、焚烧农作物残余物(N₂O)以及食物运输(N₂O)是机器学习确定的对影响粮食安全的气候变化驱动因素有重要贡献的关键变量。在对86个变量进行主成分分析后,生物质燃烧排放因子、土地管理排放因子和食物供应链排放因子是关键主成分。关注极端梯度提升、随机森林和主成分分析所揭示的变量和因子,有助于利益相关者制定有效的措施,如推广可持续的农作物残余物管理以及减少收获后损失的可持续粮食系统。我们的研究在确定影响粮食安全的温室气体关键源时未考虑空间效应的潜在影响,我们将在未来的工作中对此进行探索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e9/12325927/90f72edeae10/41598_2025_14766_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验