Neufang Susanne, Li Feifei, Akhrif Atae, Beyan Oya D
Institute of Biomedical Informatics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
Institute for Applied Informatics (FIT), Fraunhofer Society, St. Augustin, Germany.
BMC Med Inform Decis Mak. 2025 Aug 5;25(1):290. doi: 10.1186/s12911-025-03126-0.
Attention deficit/hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder. Gender disparities in the diagnosis of ADHD have been reported, suggesting that females tend to be diagnosed later in life than males are. The delayed diagnosis in females has been attributed to an inequality in the diagnostic criteria, failing to focus on the gender differences regarding symptomatology, comorbidity, and societal factors contributing to this disparity.
In this study, we introduced debiased classifiers for the diagnosis of ADHD via different bias mitigation algorithms of the AI Fairness 360 toolbox on a training dataset of 400 children and adolescents with and without ADHD (98 females, 25 ADHD patients, 73 typically developing females), a subsample of the Child Mind Institute dataset. Test data were acquired in an earlier study. Two datasets were used, one including personal characteristic features, scores of the clinical questionnaire Child Behavior Checklist, and wavelet variance coefficients as quantifiers of neural dynamics (fMRI), a second dataset included personal characteristic features, scores of the clinical questionnaire Child Behavior Checklist, and radiomic features of neural structure (sMRI).
We found that the reweighed XGBoost model achieved the best accuracy and highest fairness in both datasets. Using model explanation, we showed how reweighing influenced feature importance at the global and local levels.
Based on methodological characteristics and insights from global and local model explana-tion, we discuss the reasons of these findings and conclude, that using the combination of bias mitigation and model explanation, improved classification models can be achieved.
注意力缺陷多动障碍(ADHD)是最常见的神经发育障碍。已有报道称ADHD诊断中存在性别差异,这表明女性往往比男性在更晚的年龄被诊断出来。女性诊断延迟归因于诊断标准的不平等,未能关注症状学、共病以及导致这种差异的社会因素方面的性别差异。
在本研究中,我们通过AI Fairness 360工具箱的不同偏差缓解算法,在一个包含400名有或无ADHD的儿童和青少年(98名女性,25名ADHD患者,73名发育正常的女性)的训练数据集上引入了去偏分类器,该数据集是儿童心理研究所数据集的一个子样本。测试数据来自早期的一项研究。使用了两个数据集,一个包括个人特征、临床问卷儿童行为检查表的分数以及作为神经动力学量化指标的小波方差系数(功能磁共振成像),另一个数据集包括个人特征、临床问卷儿童行为检查表的分数以及神经结构的影像组学特征(结构磁共振成像)。
我们发现重新加权的XGBoost模型在两个数据集中都实现了最佳准确性和最高公平性。通过模型解释,我们展示了重新加权如何在全局和局部层面影响特征重要性。
基于方法学特征以及来自全局和局部模型解释的见解,我们讨论了这些发现的原因,并得出结论,通过结合偏差缓解和模型解释,可以实现改进的分类模型。