Deshmukh Manjusha, Khemchandani Mahi, Thakur Paramjit Mahesh
Computer Engineering Department, Saraswati College of Engineering, Navi Mumbai, India.
Information Technology, Saraswati College of Engineering, Navi Mumbai, India.
Appl Neuropsychol Adult. 2024 Jul 8:1-15. doi: 10.1080/23279095.2024.2368655.
The study presented focuses on the creation of a machine learning (ML) model that uses electrophysiological (EEG) data to identify kids with attention deficit hyperactivity disorder (ADHD) from healthy controls. The EEG signals are acquired during cognitive tasks to distinguish children with ADHD from their counterparts.
The EEG data recorded in cognitive exercises was filtered using low pass Bessel filter and notch filters to remove artifacts, by the data set owners. To identify unique EEG patterns, we used many well-known classifiers, including Naïve Bayes (NB), Random Forest, Decision Tree (DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost and Linear Discriminant Analysis (LDA), to identify distinct EEG patterns. Input features comprised EEG data from nineteen channels, individually and in combination.
Study indicates that EEG-based categorization can differentiate between individuals with ADHD and healthy individuals with accuracy of 84%. The RF classifier achieved a maximum accuracy of 0.84 when particular region combinations were used. Evaluation of classification performance utilizing hemisphere-specific EEG data yielded promising outcomes, particularly in the right hemisphere channels.
The study goes beyond traditional methodologies by investigating the effect of regional data on categorization results. The contributions of various brain regions to these classifications are being extensively researched. Understanding the role of different brain regions in ADHD can lead to better diagnosis and treatment options for individuals with ADHD. The study of categorization ability, utilizing EEG data specific to each hemisphere, particularly channels in the right hemisphere region, provides further granularity to the findings.
本研究聚焦于创建一种机器学习(ML)模型,该模型利用电生理(脑电图,EEG)数据从健康对照中识别出患有注意力缺陷多动障碍(ADHD)的儿童。在认知任务期间采集EEG信号,以区分患有ADHD的儿童和他们的同龄人。
认知练习中记录的EEG数据由数据集所有者使用低通贝塞尔滤波器和陷波滤波器进行滤波,以去除伪迹。为了识别独特的EEG模式,我们使用了许多知名分类器,包括朴素贝叶斯(NB)、随机森林、决策树(DT)、K近邻(KNN)、支持向量机(SVM)、AdaBoost和线性判别分析(LDA),来识别不同的EEG模式。输入特征包括来自19个通道的EEG数据,单独或组合使用。
研究表明,基于EEG的分类能够以84%的准确率区分ADHD患者和健康个体。当使用特定区域组合时,随机森林分类器达到了0.84的最高准确率。利用特定半球的EEG数据评估分类性能产生了有前景的结果,特别是在右半球通道。
本研究超越了传统方法,通过研究区域数据对分类结果的影响。正在广泛研究各个脑区对这些分类的贡献。了解不同脑区在ADHD中的作用可以为ADHD患者带来更好的诊断和治疗选择。利用每个半球特有的EEG数据,特别是右半球区域的通道进行分类能力的研究,为研究结果提供了进一步的细化。