Suppr超能文献

青少年和成人注意缺陷多动障碍中类似结构脑异常的证据:机器学习分析。

Evidence for similar structural brain anomalies in youth and adult attention-deficit/hyperactivity disorder: a machine learning analysis.

机构信息

Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA.

Department of Psychology, Syracuse University, Syracuse, NY, USA.

出版信息

Transl Psychiatry. 2021 Feb 1;11(1):82. doi: 10.1038/s41398-021-01201-4.

Abstract

Attention-deficit/hyperactivity disorder (ADHD) affects 5% of children world-wide. Of these, two-thirds continue to have impairing symptoms of ADHD into adulthood. Although a large literature implicates structural brain differences of the disorder, it is not clear if adults with ADHD have similar neuroanatomical differences as those seen in children with recent reports from the large ENIGMA-ADHD consortium finding structural differences for children but not for adults. This paper uses deep learning neural network classification models to determine if there are neuroanatomical changes in the brains of children with ADHD that are also observed for adult ADHD, and vice versa. We found that structural MRI data can significantly separate ADHD from control participants for both children and adults. Consistent with the prior reports from ENIGMA-ADHD, prediction performance and effect sizes were better for the child than the adult samples. The model trained on adult samples significantly predicted ADHD in the child sample, suggesting that our model learned anatomical features that are common to ADHD in childhood and adulthood. These results support the continuity of ADHD's brain differences from childhood to adulthood. In addition, our work demonstrates a novel use of neural network classification models to test hypotheses about developmental continuity.

摘要

注意缺陷多动障碍(ADHD)影响全球 5%的儿童。其中,三分之二的儿童在成年后仍持续存在 ADHD 损害症状。尽管大量文献表明该疾病存在大脑结构差异,但尚不清楚 ADHD 成人是否具有与近期来自大型 ENIGMA-ADHD 联盟的报告中所见相似的神经解剖学差异,该报告发现 ADHD 儿童存在结构差异,但 ADHD 成人则没有。本文使用深度学习神经网络分类模型来确定 ADHD 儿童的大脑中是否存在与 ADHD 成人相同的神经解剖学变化,反之亦然。我们发现,结构 MRI 数据可以显著区分 ADHD 儿童和对照组参与者,无论是儿童还是成人。与 ENIGMA-ADHD 的先前报告一致,儿童样本的预测性能和效应量优于成人样本。在儿童样本中,在成人样本上训练的模型可以显著预测 ADHD,这表明我们的模型学习到了 ADHD 在儿童期和成年期共有的解剖学特征。这些结果支持 ADHD 从儿童期到成年期大脑差异的连续性。此外,我们的工作还展示了神经网络分类模型在测试关于发育连续性的假设方面的一种新应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69ea/7851168/cd3b65d60b28/41398_2021_1201_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验