文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

精神分裂症患者视觉注意力测试期间脑电图信号与临床评估的相关性研究。

A correlation study on EEG signals during visual concentration test and clinical evaluation in schizophrenia patients.

作者信息

Huang Min-Wei, Chang Qun-Wei, Chu Wen-Lin

机构信息

School of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.

Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, 130, Taiwan.

出版信息

BMC Psychiatry. 2025 Aug 5;25(1):761. doi: 10.1186/s12888-025-07237-w.


DOI:10.1186/s12888-025-07237-w
PMID:40764561
Abstract

BACKGROUND: This study addresses the challenge of accurately classifying the severity of schizophrenia in patients through a clever approach. By leveraging electroencephalography (EEG) signals, we aim to establish a method for evaluating patient conditions, thereby contributing to the psychiatric diagnosis and treatment field. METHODS: Our research methodology encompasses a comprehensive system framework designed to analyze EEG signals with the Positive and Negative Syndrome Scale (PANSS) for correlation analysis. The process involves: (1) administering the PANSS test to create a database of schizophrenia patients; (2) developing a visual concentration test system that measures EEG signals in real-time; (3) processing these signals to construct an EEG feature database; (4) employing support vector machine and decision tree methods for illness severity classification; (5) conducting statistical analysis to correlate PANSS scores with EEG features, assessing the effectiveness of these correlations in clinical applications. RESULTS: The study successfully demonstrated the potential of a concentration detection system, integrating EEG signal analysis with PANSS scores, to classify schizophrenia severity accurately. Applying SVM and decision tree methods established significant correlations between EEG features and clinical scales, indicating the system's efficacy in supporting psychiatric diagnosis. CONCLUSIONS: Our findings suggest that the proposed analytical methods, focusing on EEG signals and employing a novel system framework, can effectively assist in classifying the severity of schizophrenia. This approach offers promising implications for enhancing diagnostic accuracy and tailoring treatment strategies for patients with schizophrenia.

摘要

背景:本研究通过一种巧妙的方法应对准确分类精神分裂症患者严重程度的挑战。通过利用脑电图(EEG)信号,我们旨在建立一种评估患者病情的方法,从而为精神疾病的诊断和治疗领域做出贡献。 方法:我们的研究方法包括一个全面的系统框架,该框架旨在使用阳性和阴性症状量表(PANSS)分析EEG信号以进行相关性分析。该过程包括:(1)进行PANSS测试以创建精神分裂症患者数据库;(2)开发一个实时测量EEG信号的视觉注意力测试系统;(3)处理这些信号以构建EEG特征数据库;(4)采用支持向量机和决策树方法进行疾病严重程度分类;(5)进行统计分析以关联PANSS评分与EEG特征,评估这些相关性在临床应用中的有效性。 结果:该研究成功证明了一个注意力检测系统的潜力,该系统将EEG信号分析与PANSS评分相结合,能够准确分类精神分裂症的严重程度。应用支持向量机和决策树方法建立了EEG特征与临床量表之间的显著相关性,表明该系统在支持精神疾病诊断方面的有效性。 结论:我们的研究结果表明,所提出的分析方法,聚焦于EEG信号并采用新颖的系统框架,能够有效地协助分类精神分裂症的严重程度。这种方法对于提高诊断准确性和为精神分裂症患者量身定制治疗策略具有广阔的前景。

相似文献

[1]
A correlation study on EEG signals during visual concentration test and clinical evaluation in schizophrenia patients.

BMC Psychiatry. 2025-8-5

[2]
Classification of finger movements through optimal EEG channel and feature selection.

Front Hum Neurosci. 2025-7-16

[3]
Artificial intelligence based BCI using SSVEP signals with single channel EEG.

Technol Health Care. 2025-2-5

[4]
Exploring the Potential of Electroencephalography Signal-Based Image Generation Using Diffusion Models: Integrative Framework Combining Mixed Methods and Multimodal Analysis.

JMIR Med Inform. 2025-6-25

[5]
Enhanced schizophrenia detection using multichannel EEG and CAOA-RST-based feature selection.

Sci Rep. 2025-7-1

[6]
An open dataset and machine learning algorithms for Niacin Skin-Flushing Response based screening of psychiatric disorders.

BMC Psychiatry. 2025-8-4

[7]
Evidence-based medicine and electrophysiology in schizophrenia.

Clin EEG Neurosci. 2009-4

[8]
Clozapine combined with different antipsychotic drugs for treatment-resistant schizophrenia.

Cochrane Database Syst Rev. 2017-3-23

[9]
Schizophrenia detection from electroencephalogram signals using image encoding and wrapper-based deep feature selection approach.

Sci Rep. 2025-7-1

[10]
Antipsychotics for schizophrenia spectrum disorders with catatonic symptoms.

Cochrane Database Syst Rev. 2022-7-12

本文引用的文献

[1]
Diagnosis of Schizophrenia and Its Subtypes Using MRI and Machine Learning.

Brain Behav. 2025-1

[2]
World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Participants.

JAMA. 2025-1-7

[3]
Identification and diagnosis of schizophrenia based on multichannel EEG and CNN deep learning model.

Schizophr Res. 2024-9

[4]
Automatic identification of schizophrenia employing EEG records analyzed with deep learning algorithms.

Schizophr Res. 2023-11

[5]
Industry 4.0 technologies and their applications in fighting COVID-19 pandemic using deep learning techniques.

Comput Biol Med. 2022-6

[6]
Exploiting pretrained CNN models for the development of an EEG-based robust BCI framework.

Comput Biol Med. 2022-4

[7]
Advanced EEG-based learning approaches to predict schizophrenia: Promises and pitfalls.

Artif Intell Med. 2021-4

[8]
Approximate Entropy and Sample Entropy: A Comprehensive Tutorial.

Entropy (Basel). 2019-5-28

[9]
Neurophysiological evidence for emotion regulation impairment in schizophrenia: The role of visual attention and cognitive effort.

J Abnorm Psychol. 2020-8

[10]
Attention Deficit Hyperactivity Disorder Diagnosis using non-linear univariate and multivariate EEG measurements: a preliminary study.

Phys Eng Sci Med. 2020-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索