Huang Min-Wei, Chang Qun-Wei, Chu Wen-Lin
School of Medicine, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan.
Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, 130, Taiwan.
BMC Psychiatry. 2025 Aug 5;25(1):761. doi: 10.1186/s12888-025-07237-w.
BACKGROUND: This study addresses the challenge of accurately classifying the severity of schizophrenia in patients through a clever approach. By leveraging electroencephalography (EEG) signals, we aim to establish a method for evaluating patient conditions, thereby contributing to the psychiatric diagnosis and treatment field. METHODS: Our research methodology encompasses a comprehensive system framework designed to analyze EEG signals with the Positive and Negative Syndrome Scale (PANSS) for correlation analysis. The process involves: (1) administering the PANSS test to create a database of schizophrenia patients; (2) developing a visual concentration test system that measures EEG signals in real-time; (3) processing these signals to construct an EEG feature database; (4) employing support vector machine and decision tree methods for illness severity classification; (5) conducting statistical analysis to correlate PANSS scores with EEG features, assessing the effectiveness of these correlations in clinical applications. RESULTS: The study successfully demonstrated the potential of a concentration detection system, integrating EEG signal analysis with PANSS scores, to classify schizophrenia severity accurately. Applying SVM and decision tree methods established significant correlations between EEG features and clinical scales, indicating the system's efficacy in supporting psychiatric diagnosis. CONCLUSIONS: Our findings suggest that the proposed analytical methods, focusing on EEG signals and employing a novel system framework, can effectively assist in classifying the severity of schizophrenia. This approach offers promising implications for enhancing diagnostic accuracy and tailoring treatment strategies for patients with schizophrenia.
背景:本研究通过一种巧妙的方法应对准确分类精神分裂症患者严重程度的挑战。通过利用脑电图(EEG)信号,我们旨在建立一种评估患者病情的方法,从而为精神疾病的诊断和治疗领域做出贡献。 方法:我们的研究方法包括一个全面的系统框架,该框架旨在使用阳性和阴性症状量表(PANSS)分析EEG信号以进行相关性分析。该过程包括:(1)进行PANSS测试以创建精神分裂症患者数据库;(2)开发一个实时测量EEG信号的视觉注意力测试系统;(3)处理这些信号以构建EEG特征数据库;(4)采用支持向量机和决策树方法进行疾病严重程度分类;(5)进行统计分析以关联PANSS评分与EEG特征,评估这些相关性在临床应用中的有效性。 结果:该研究成功证明了一个注意力检测系统的潜力,该系统将EEG信号分析与PANSS评分相结合,能够准确分类精神分裂症的严重程度。应用支持向量机和决策树方法建立了EEG特征与临床量表之间的显著相关性,表明该系统在支持精神疾病诊断方面的有效性。 结论:我们的研究结果表明,所提出的分析方法,聚焦于EEG信号并采用新颖的系统框架,能够有效地协助分类精神分裂症的严重程度。这种方法对于提高诊断准确性和为精神分裂症患者量身定制治疗策略具有广阔的前景。
Front Hum Neurosci. 2025-7-16
Technol Health Care. 2025-2-5
Clin EEG Neurosci. 2009-4
Cochrane Database Syst Rev. 2017-3-23
Cochrane Database Syst Rev. 2022-7-12
Brain Behav. 2025-1
Comput Biol Med. 2022-4
Artif Intell Med. 2021-4
Entropy (Basel). 2019-5-28