Suppr超能文献

使用多通道脑电图和基于CAOA-RST的特征选择增强精神分裂症检测

Enhanced schizophrenia detection using multichannel EEG and CAOA-RST-based feature selection.

作者信息

Abrar Mohammad, Salam Abdu, Albugmi Ahmed, Al-Otaibi Fahad, Amin Farhan, de la Torre Isabel, Montero Thania Candelaria Chio, Gala Perla Araceli Arroyo

机构信息

Faculty of Computer Studies, Arab Open University, Muscat 122, P.O. Box 1596, Muscat, Oman.

Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.

出版信息

Sci Rep. 2025 Jul 1;15(1):21814. doi: 10.1038/s41598-025-05028-7.

Abstract

Schizophrenia is a mental disorder characterized by hallucinations, delusions, disorganized thinking and behavior, and inappropriate affect. Early and accurate diagnosis of schizophrenia remains a challenge due to the disorder's complex nature and the limitations of state-of-the-art techniques. It is evident from the literature that electroencephalogram (EEG) signals provide valuable insights into brain activity, but their high dimensionality and complexity pose remain key challenges. Thus, our research introduces a novel approach by integrating the multichannel EGG, Crossover-Boosted Archimedes Optimization Algorithm (CAOA), and Rough Set Theory (RST) for schizophrenia detection. It is a four-stage model. In the first stage, Raw EGG data is collected. The data is passed to the next stage, which is called data preprocessing. This is used for artifact removal, band-pass filtering, and data normalization. The preprocessed data passed to the next stage. In the feature extraction stage, feature selection is performed using CAOA. In addition, classification is performed using a Support Vector Machine (SVM) based on features extracted through Multivariate Empirical Mode Function (MEMF) and entropy measures. The data interpretation stage displays the results to the end user using the data interpretation stage. We experimented and tested our proposed model using real EEG datasets. The simulation results prove that the proposed model achieved an average accuracy of 94.9%, sensitivity of 93.9%, specificity of 96.4%, and precision of 92.7%. Thus, our proposed model demonstrates significant improvements over state-of-the-art methods. In addition, the integration of CAOA and RST effectively addresses the challenges of high-dimensional EEG data, helps optimize the feature selection process, and increases accuracy. In future work, we suggest incorporating large-size datasets that include more diverse patient groups and refining the model with advanced machine-learning models and techniques.

摘要

精神分裂症是一种以幻觉、妄想、思维和行为紊乱以及情感不适当为特征的精神障碍。由于该疾病的复杂性和现有技术的局限性,精神分裂症的早期准确诊断仍然是一项挑战。从文献中可以明显看出,脑电图(EEG)信号为大脑活动提供了有价值的见解,但其高维度和复杂性仍然是关键挑战。因此,我们的研究引入了一种新方法,通过整合多通道EEG、交叉增强阿基米德优化算法(CAOA)和粗糙集理论(RST)来进行精神分裂症检测。这是一个四阶段模型。在第一阶段,收集原始EEG数据。数据被传递到下一阶段,即数据预处理阶段。这用于去除伪迹、带通滤波和数据归一化。预处理后的数据进入下一阶段。在特征提取阶段,使用CAOA进行特征选择。此外,基于通过多变量经验模式函数(MEMF)和熵测度提取的特征,使用支持向量机(SVM)进行分类。数据解释阶段将结果显示给最终用户。我们使用真实的EEG数据集对我们提出的模型进行了实验和测试。仿真结果证明,所提出的模型平均准确率达到94.9%,灵敏度为93.9%,特异性为96.4%,精确率为92.7%。因此,我们提出的模型相对于现有方法有显著改进。此外,CAOA和RST的整合有效地解决了高维EEG数据的挑战,有助于优化特征选择过程并提高准确率。在未来的工作中,我们建议纳入包含更多不同患者群体的大型数据集,并用先进的机器学习模型和技术对模型进行优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验