Suppr超能文献

利用磁共振成像和机器学习诊断精神分裂症及其亚型

Diagnosis of Schizophrenia and Its Subtypes Using MRI and Machine Learning.

作者信息

Tavakoli Hosna, Rostami Reza, Shalbaf Reza, Nazem-Zadeh Mohammad-Reza

机构信息

Computational and Artificial Intelligence Department, Institute of Cognitive Science Studies, Tehran, Iran.

Department of Psychology, Tehran University, Tehran, Iran.

出版信息

Brain Behav. 2025 Jan;15(1):e70219. doi: 10.1002/brb3.70219.

Abstract

PURPOSE

The neurobiological heterogeneity present in schizophrenia remains poorly understood. This likely contributes to the limited success of existing treatments and the observed variability in treatment responses. Our objective was to employ magnetic resonance imaging (MRI) and machine learning (ML) algorithms to improve the classification of schizophrenia and its subtypes.

METHOD

We utilized a public dataset provided by the UCLA (University of California, Los Angeles) Consortium for Neuropsychiatric Research, containing structural MRI and resting-state fMRI (rsfMRI) data. We integrated all individuals within the dataset diagnosed with schizophrenia (N = 50), along with age- and gender-matched healthy individuals (N = 50). We extracted volumetrics of 66 subcortical and thickness of 72 cortical regions. Additionally, we obtained four graph-based measures for 116 intracranial regions from rsfMRI data, including degree, betweenness centrality, participation coefficient, and local efficiency. Employing conventional ML methods, we sought to distinguish the patients with schizophrenia from healthy individuals. Furthermore, we applied the methods for discriminating subtypes of schizophrenia. To streamline the feature set, various feature selection techniques were applied. Moreover, a validation phase involved employing the model on a dataset domestically acquired using the same imaging assessments (N = 13). Finally, we explored the correlation between neuroimaging features and behavioral assessments.

FINDING

The classification accuracy reached as high as 79% in distinguishing schizophrenia patients from healthy in the UCLA dataset. This result was achieved by the k-nearest neighbor algorithm, utilizing 12 brain neuroimaging features, selected by the feature selection method of minimum redundancy maximum relevance (MRMR). The model demonstrated effectiveness (72% accuracy) in estimating the patient's label for a new dataset acquired domestically. Using a linear support vector machine (SVM) on 62 features obtained from MRMR, patients with schizophrenic subtypes were classified with an accuracy of 64%. The highest Spearman correlation coefficient between the neuroimaging features and behavioral assessments was observed between the degree of the postcentral gyrus and mean reaction time in the verbal capacity task (r = 0.49, p = 0.001).

CONCLUSION

The findings of this study underscore the utility of MRI and ML algorithms in enhancing the diagnostic process for schizophrenia. Furthermore, these methods hold promise for detecting both brain-related abnormalities and cognitive impairments associated with this disorder.

摘要

目的

精神分裂症中存在的神经生物学异质性仍未得到充分理解。这可能导致现有治疗方法的成功率有限以及观察到的治疗反应变异性。我们的目标是采用磁共振成像(MRI)和机器学习(ML)算法来改善精神分裂症及其亚型的分类。

方法

我们利用了加利福尼亚大学洛杉矶分校(UCLA)神经精神研究联盟提供的一个公共数据集,其中包含结构MRI和静息态功能磁共振成像(rsfMRI)数据。我们将数据集中所有被诊断为精神分裂症的个体(N = 50)与年龄和性别匹配的健康个体(N = 50)整合在一起。我们提取了66个皮质下区域的体积和72个皮质区域的厚度。此外,我们从rsfMRI数据中获得了116个颅内区域的四种基于图的测量值,包括度、介数中心性、参与系数和局部效率。采用传统的ML方法,我们试图区分精神分裂症患者和健康个体。此外,我们应用这些方法来区分精神分裂症的亚型。为了简化特征集,应用了各种特征选择技术。此外,一个验证阶段涉及在使用相同成像评估在国内获取的数据集(N = 13)上应用该模型。最后,我们探索了神经影像学特征与行为评估之间的相关性。

结果

在UCLA数据集中,区分精神分裂症患者和健康个体的分类准确率高达79%。这一结果是通过k近邻算法实现的,该算法利用了由最小冗余最大相关性(MRMR)特征选择方法选择的12个脑神经影像学特征。该模型在估计国内获取的新数据集的患者标签方面显示出有效性(准确率72%)。使用从MRMR获得的62个特征的线性支持向量机(SVM),对精神分裂症亚型患者进行分类的准确率为64%。在中央后回的度与言语能力任务中的平均反应时间之间观察到神经影像学特征与行为评估之间的最高斯皮尔曼相关系数(r = 0.49,p = 0.001)。

结论

本研究结果强调了MRI和ML算法在加强精神分裂症诊断过程中的效用。此外,这些方法有望检测与该疾病相关的脑相关异常和认知障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0247/11688118/6871a14f2d1d/BRB3-15-e70219-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验