Suppr超能文献

在红藻氨酸生物合成过程中吡咯烷形成机制中的多个催化分支点导致了多样的反应结果。

Multiple Catalytic Branch Points in the Mechanism of Pyrrolidine Formation During Kainoid Biosynthesis Leads to Diverse Reaction Outcomes.

作者信息

Chen Tzu-Yu, Ruszczycky Mark W, Yao Angela, Li Xiaojun, Chien Tun-Cheng, Chang Wei-Chen

机构信息

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695 United States.

Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712 United States.

出版信息

J Am Chem Soc. 2025 Aug 20;147(33):29961-29969. doi: 10.1021/jacs.5c07226. Epub 2025 Aug 5.

Abstract

The biosynthesis of neuroexcitatory kainoids requires radical-mediated cyclization of -isoprenylated derivatives of l-glutamate catalyzed by nonheme iron and 2-oxoglutarate-dependent enzymes. While KabC and DabC from species of red algae catalyze this reaction during the biosynthesis of kainic acid and domoic acid, respectively, KabC can also produce a bicyclic lactone as an alternative reaction product. Herein, the radical-mediated catalytic pathways of KabC and DabC with the substrate -dimethylallyl l-glutamate are fully mapped demonstrating as many as three different product determining steps and competing processes of hydroxylation, C-C bond formation, intramolecular nucleophilic addition, desaturation and C-C bond cleavage leading to four different products including kainic acid, a bicyclic lactone, a hydroxylated product and oxidative rearrangement concomitant with elimination of formaldehyde. The reaction proceeds via stereoselective abstraction of the H atom from C3 of the substrate followed by radical cyclization that outcompetes canonical hydroxy rebound. Evidence of radical triggered cyclization is provided by the observation of a ring-opened product when a cyclopropyl analogue is assayed. Measurement of primary deuterium kinetic isotope effects less than 2 on the product determining step of desaturation versus lactonization suggests the former involves proton coupled electron transfer (PCET) rather than an acid-base reaction. Furthermore, involvement of a cationic species is supported by detection of a rearrangement product. Collectively, these observations not only reveal the complexity of pyrrolidine formation during kainoid biosynthesis but also its amenability to changes in reaction outcome, which is of use for understanding the control of unstable intermediates during radical-mediated enzymatic reactions.

摘要

神经兴奋性海人藻酸类化合物的生物合成需要由非血红素铁和2-氧代戊二酸依赖性酶催化的L-谷氨酸的异戊二烯基化衍生物的自由基介导环化反应。红藻中的KabC和DabC分别在海藻酸和软骨藻酸的生物合成过程中催化此反应,而KabC也可以产生双环内酯作为替代反应产物。在此,KabC和DabC与底物γ-二甲基烯丙基-L-谷氨酸的自由基介导催化途径已被完全解析,显示多达三个不同的产物决定步骤以及羟基化、碳-碳键形成、分子内亲核加成、去饱和作用和碳-碳键裂解等竞争过程,从而产生四种不同产物,包括海藻酸、双环内酯、羟基化产物以及伴随甲醛消除的氧化重排产物。反应通过从底物C3立体选择性提取氢原子,随后进行自由基环化反应,该反应胜过了典型的羟基回弹反应。当测定环丙基类似物时观察到开环产物,这为自由基引发的环化反应提供了证据。在去饱和与内酯化的产物决定步骤中,初级氘动力学同位素效应小于2,这表明前者涉及质子耦合电子转移(PCET)而非酸碱反应。此外,重排产物的检测支持了阳离子物种的参与。总的来说,这些观察结果不仅揭示了海人藻酸类化合物生物合成过程中吡咯烷形成的复杂性,还揭示了其对反应结果变化的适应性,这对于理解自由基介导的酶促反应中不稳定中间体的控制具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验