Huang Shenyu, Yang Boyuan, Huang Xiaoling, Zhang Huina, Luo Dong, Tong Guanchao, Wang Yijie, Shao Yongqing, Chen Menglu, Gao Qi, Ye Juan
Zhejiang University, Eye Center of Second Affiliated Hospital, School of Medicine. Zhejiang Provincial Key Laboratory of Ophthalmology. Zhejiang Provincial Clinical Research Center for Eye Diseases. Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China.
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
NPJ Digit Med. 2025 Aug 5;8(1):505. doi: 10.1038/s41746-025-01904-8.
Blepharospasm is a focal dystonia characterized by involuntary eyelid contractions that impair vision and social function. The subtle clinical signs of blepharospasm make early and accurate diagnosis difficult, delaying timely intervention. In this study, we propose a dual cross-attention deep learning framework that integrates temporal video features and facial landmark dynamics to assess blepharospasm severity, frequency, and diagnosis from smartphone-recorded facial videos. A retrospective dataset of 847 patient videos collected from two hospitals (2016-2023) was used for model development. The model achieved high accuracy for severity (0.828) and frequency (0.82), and moderate performance for diagnosis (0.674).SHAP analysis identified case-specific video fragments contributing to predictions, enhancing interpretability. In a prospective evaluation on an independent dataset (N = 179), AI assistance improved junior ophthalmologist's diagnostic accuracy by up to 18.5%. These findings demonstrate the potential of an explainable, smartphone-compatible video model to support early detection and assessment of blepharospasm.
眼睑痉挛是一种局灶性肌张力障碍,其特征为不自主的眼睑收缩,会损害视力和社交功能。眼睑痉挛的细微临床体征使得早期准确诊断变得困难,从而延误了及时干预。在本研究中,我们提出了一种双交叉注意力深度学习框架,该框架整合了视频的时间特征和面部标志动态,以从智能手机录制的面部视频中评估眼睑痉挛的严重程度、频率和诊断情况。我们使用从两家医院收集的847例患者视频的回顾性数据集(2016 - 2023年)进行模型开发。该模型在严重程度(0.828)和频率(0.82)方面取得了较高的准确率,在诊断方面表现中等(0.674)。SHAP分析确定了有助于预测的特定病例视频片段,增强了可解释性。在对一个独立数据集(N = 179)的前瞻性评估中,人工智能辅助将初级眼科医生的诊断准确率提高了18.5%。这些发现证明了一种可解释的、与智能手机兼容的视频模型在支持眼睑痉挛早期检测和评估方面的潜力。