Samiei Sepehr, Kalantarian Asadollah, Iraji Zad Azam, Darmiani Narges
Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, 14588-89694, Iran.
Department of Physics, Sharif University of Technology, Azadi Street, Tehran, 11365-9161, Iran.
Sci Rep. 2025 Aug 5;15(1):28639. doi: 10.1038/s41598-025-12019-1.
This study demonstrates a high-performance room-temperature ethylene glycol (EG) gas sensor using CuO/MXene bilayer films on quartz crystal microbalance (QCM) substrates, addressing critical needs for industrial safety and environmental monitoring. The fabricated sensors were systematically characterized by XRD, FTIR, and FESEM, revealing that the CuO/MXene bilayer configuration achieved exceptional performance with an ultra-low detection limit of 381 ppb, high sensitivity of 22.8 Hz/ppm, and excellent selectivity compared to individual CuO, MXene, or their mixture films. The enhanced sensing capability originates from synergistic effects between p-type CuO and conductive MXene, forming a Schottky junction that facilitates charge transfer and promotes EG adsorption through combined physisorption mechanisms involving hydrogen bonding with MXene's functional groups (OH, O, F) and interactions with oxygen species on CuO nanoparticles. At 72 ppm EG concentration, the bilayer sensor exhibited 12.6-fold, 3.6-fold, and 2.34-fold higher response than pure CuO, MXene alone, and their mixture film, respectively. While humidity tests showed a moderate ~ 15% response reduction at 60% RH, the CuO/MXene bilayer maintained robust performance, establishing it as a cost-effective and reliable room-temperature sensing platform suitable for next-generation gas detection applications in challenging environments.
本研究展示了一种高性能的室温乙二醇(EG)气体传感器,该传感器采用石英晶体微天平(QCM)基板上的CuO/MXene双层膜,满足了工业安全和环境监测的关键需求。通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和场发射扫描电子显微镜(FESEM)对制备的传感器进行了系统表征,结果表明,与单独的CuO、MXene或它们的混合膜相比,CuO/MXene双层结构具有卓越的性能,超低检测限为381 ppb,高灵敏度为22.8 Hz/ppm,以及出色的选择性。增强的传感能力源于p型CuO和导电MXene之间的协同效应,形成了肖特基结,促进了电荷转移,并通过涉及与MXene官能团(OH、O、F)形成氢键以及与CuO纳米颗粒上的氧物种相互作用的联合物理吸附机制促进了EG吸附。在72 ppm的EG浓度下,双层传感器的响应分别比纯CuO、单独的MXene及其混合膜高12.6倍、3.6倍和2.34倍。虽然湿度测试表明在60%相对湿度下响应适度降低约15%,但CuO/MXene双层膜仍保持强大的性能,使其成为一种经济高效且可靠的室温传感平台,适用于具有挑战性环境中的下一代气体检测应用。