Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
School of Basic Sciences, Indian Institute of Technology, Kamand campus, Mandi, Himachal Pradesh, 175005, India.
J Nanobiotechnology. 2022 May 19;20(1):235. doi: 10.1186/s12951-022-01428-3.
MXenes with interesting optical and electrical properties have been attractive in biomedical applications such as antibacterial and anticancer agents, but their low photogeneration efficiency of reactive oxygen species (ROS) and poor stability are major concerns against microbial resistance.
Water-dispersible single layer TiCT-based MXene through etching tightly stacked MAX phase precursor using a minimally intensive layer delamination method. After addition of Cu(II) ions, the adsorbed Cu(II) ions underwent self-redox reactions with the surface oxygenated moieties of MXene, leading to in situ formation of CuO species to yield CuO/TiCT nanosheets (heterostructures).
Under NIR irradiation, the CuO enhanced generation of electron-hole pairs, which boosted the photocatalytic production of superoxide and subsequent transformation into hydrogen peroxide. Broad-spectrum antimicrobial performance of CuO/TiCT nanosheets with sharp edges is attributed to the direct contact-induced membrane disruption, localized photothermal therapy, and in situ generated cytotoxic free radicals. The minimum inhibitory concentration of CuO/TiCT nanosheets reduced at least tenfold upon NIR laser irradiation compared to pristine CuO/TiCT nanosheets. The CuO/TiCT nanosheets were topically administrated on the methicillin-resistant Staphylococcus aureus (MRSA) infected wounds on diabetic mice.
Upon NIR illumination, CuO/TiCT nanosheets eradicated MRSA and their associated biofilm to promote wound healing. The CuO/TiCT nanosheets with superior catalytic and photothermal properties have a great scope as an effective antimicrobial modality for the treatment of infected wounds.
具有有趣的光学和电学性质的 MXenes 在抗菌和抗癌等生物医学应用中很有吸引力,但它们产生活性氧物质 (ROS) 的光生成效率低和稳定性差是对抗微生物耐药性的主要关注点。
通过使用最小强度的层离方法蚀刻紧密堆积的 MAX 相前体,获得水散单层 TiCT 基 MXene。添加 Cu(II) 离子后,吸附的 Cu(II) 离子与 MXene 表面含氧部分发生自氧化还原反应,导致原位形成 CuO 物种,从而生成 CuO/TiCT 纳米片(异质结构)。
在近红外光照射下,CuO 增强了电子-空穴对的生成,从而促进了超氧化物的光催化生成,并随后转化为过氧化氢。具有锋利边缘的 CuO/TiCT 纳米片的广谱抗菌性能归因于直接接触诱导的膜破坏、局部光热疗法和原位产生的细胞毒性自由基。与原始的 CuO/TiCT 纳米片相比,在近红外激光照射下,CuO/TiCT 纳米片的最小抑菌浓度至少降低了十倍。将 CuO/TiCT 纳米片局部施用于糖尿病小鼠耐甲氧西林金黄色葡萄球菌 (MRSA) 感染的伤口上。
在近红外光照射下,CuO/TiCT 纳米片根除了 MRSA 及其相关生物膜,从而促进了伤口愈合。具有优异催化和光热性能的 CuO/TiCT 纳米片作为治疗感染性伤口的有效抗菌方式具有广阔的前景。