Ullah Ihsan, Khattak Saadullah, Chen Linjie, Sun Jing, Jiang Yongsheng, Wen Feng, You Zhifeng, Li Huaqiong, Zuo Wei
Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, PR China.
College of Chemical Engineering, Fuzhou University, Fuzhou, Zhejian 350116, PR China.
ACS Appl Mater Interfaces. 2025 Aug 20;17(33):47562-47575. doi: 10.1021/acsami.5c04285. Epub 2025 Aug 5.
Implant-associated infections and inadequate osseointegration are major contributors to orthopedic implant failures. Although hydrothermally grown zinc oxide (ZnO) nanorods on titanium (Ti) implants enhance antibacterial activity, their aggressive degradation and uncontrolled Zn leaching do not meet the requirements for bone implants and can damage the surrounding tissues. This study introduces a crystal-damage-free nanoengineering mechanism to enhance the stability of ZnO nanorods by utilizing a carbon nanolayer as a sacrificial template between the ZnO core and TiO. This mechanism induced the formation of a hybrid ZnTiO heterostructure within the carbon layer at a low temperature of 500 °C by reducing the required activation energy. This carbon layer acts as a diffusion barrier, allowing the unilateral diffusion of ZnO into TiO while preventing Ti diffusion into the ZnO core. The resulting ZnO@TiO-6 heterostructure controlled Zn leaching and exhibited significant osteogenic activity of MC3T3-E1 cells and potent antibacterial efficacy against and due to the differential landscape of osteoblasts and bacteria. studies further confirm that ZnO@TiO-6 heterostructure eradicated 90% of bacteria, alleviated inflammation, and enhanced biocompatibility. Unlike Ti implants, which lack antibacterial properties, and ZnO alone, which induces inflammation, ZnO@TiO-6 nanorods provide enhanced stability, sustained Zn release, optimized ROS levels, and dual antibacterial and osteogenic functions, making them a promising advancement for orthopedic and dental implants.
植入物相关感染和骨整合不足是导致骨科植入物失败的主要因素。虽然在钛(Ti)植入物上通过水热生长的氧化锌(ZnO)纳米棒可增强抗菌活性,但其剧烈降解和不受控制的锌浸出不符合骨植入物的要求,还会损害周围组织。本研究引入一种无晶体损伤的纳米工程机制,通过在ZnO核心与TiO之间利用碳纳米层作为牺牲模板来增强ZnO纳米棒的稳定性。该机制通过降低所需的活化能,在500℃的低温下诱导在碳层内形成混合的ZnTiO异质结构。此碳层充当扩散屏障,允许ZnO单向扩散到TiO中,同时防止Ti扩散到ZnO核心。所得的ZnO@TiO-6异质结构控制了锌的浸出,并由于成骨细胞和细菌的不同环境,对MC3T3-E1细胞表现出显著的成骨活性以及对[具体细菌1]和[具体细菌2]具有强大的抗菌功效。进一步的研究证实,ZnO@TiO-6异质结构可根除90%的细菌,减轻炎症,并增强生物相容性。与缺乏抗菌性能的Ti植入物以及单独使用会引发炎症的ZnO不同,ZnO@TiO-6纳米棒具有更高的稳定性、持续的锌释放、优化的活性氧水平以及抗菌和成骨双重功能,使其成为骨科和牙科植入物领域有前景的进展。