Ding Dong, Xu Xinyue, Li Feng, Saparbaev Aziz, Zakhidov Erkin, Sun Mingliang
School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China.
Analytical and Testing Center, Qingdao University of Science & Technology, Qingdao, 266042, China.
Small. 2025 Aug 5:e03142. doi: 10.1002/smll.202503142.
In the organic room-temperature phosphorescence (RTP) field, the high performance deep blue emission with high color purity remains a challenge due to low stability under high energy gap constraints and the trade-off between lifetime and quantum efficiency. In this study, high performances deep blue RTP materials are successfully fabricated by doping three pinacol boronic ester (BPin) derivatives into a polyvinyl alcohol (PVA) matrix for the first time, with CIE coordinates (0.149, 0.061)/ (0.147,0.069)/ (0.145,0.076) for carbazole (CZBPin), dibenzofuran (DBFBPin) and dibenzothiophene (DBTBPin) based BPin respectively. By simple heteroatom modulation in these three phosphor molecules, altralong lifetime up to 4.64 s and a phosphorescence quantum yield of 60.4% is balanced. Moreover, even at an extremely low doping concentration (0.001 wt.%), the material maintained an ultra-long phosphorescence lifetime of 1.91 s, which make the future practical applications cost-effective. Further theoretical calculations and Raman spectroscopy measurement prove that the strong hydrogen bonds between the guest molecules and PVA chains effectively restricted molecular vibrations and motions, thereby promoting phosphorescence performances. Finally, solar energy activated emission, information encryption, and multicolor displays through triplet-to-singlet Förster resonance energy transfer (TSFRET) are demonstrated for future potential applications.
在有机室温磷光(RTP)领域,由于在高能量隙限制下稳定性较低以及寿命与量子效率之间的权衡,实现具有高色纯度的高性能深蓝色发射仍然是一项挑战。在本研究中,首次通过将三种频哪醇硼酸酯(BPin)衍生物掺杂到聚乙烯醇(PVA)基质中,成功制备出了高性能深蓝色RTP材料,基于咔唑(CZBPin)、二苯并呋喃(DBFBPin)和二苯并噻吩(DBTBPin)的BPin的CIE坐标分别为(0.149, 0.061)/(0.147,0.069)/(0.145,0.076)。通过对这三种磷光分子进行简单的杂原子调制,实现了长达4.64 s的超长寿命与60.4%的磷光量子产率之间的平衡。此外,即使在极低的掺杂浓度(0.001 wt.%)下,该材料仍保持1.91 s的超长磷光寿命,这使得其未来的实际应用具有成本效益。进一步的理论计算和拉曼光谱测量证明,客体分子与PVA链之间的强氢键有效地限制了分子振动和运动,从而提升了磷光性能。最后,展示了太阳能激活发射、信息加密以及通过三重态到单重态Förster共振能量转移(TSFRET)实现的多色显示,以用于未来的潜在应用。