Joshi Akshat, Agrawal Akhilesh, Choudhury Saswat, Rath Subha Narayana, Joshi Akshay, Taori Kushal, Subramani Savadamoorthi Kamatchi, Murugesan Sabari, Majumdar Ujjayan, Lee Ji-Hoo, Oh Suk-Jung
Department of Research and Development, EcoWorld Pharm Co., Ltd, South Korea.
Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
Biomater Sci. 2025 Sep 9;13(18):4916-4951. doi: 10.1039/d5bm00801h.
Articular cartilage exhibits a limited capacity for self-repair, prompting extensive research into advanced biomaterials that can support tissue regeneration. Among these, injectable hydrogels have gained attention for their minimally invasive delivery and suitability for bioprinting applications. However, conventional nanoporous bulk hydrogels often lack the necessary microporosity and architectural complexity to fully support effective tissue regeneration. To overcome these shortcomings, recent innovations have turned toward granular hydrogels-injectable materials fabricated by dense packing of hydrogel microparticles into cohesive, microporous bulk hydrogels. These granular systems offer improved injectability, superior microporosity, and the ability to form heterogeneous bioinks/injectables that better replicate the natural extracellular matrix, thereby promoting more efficient regeneration. This review delves into the advancements in granular hydrogel technology, with a focus on the fabrication of hydrogel microparticles and the jamming strategies used to assemble them into granular injectables/bioinks. It further explores their potential in cartilage tissue repair, emphasizing the benefits of such emerging microporous bulk assemblies in minimally invasive procedures (MIPs) or as smart bioinks for fabricating patient specific implants. Finally, the review outlines key opportunities and challenges in translating these innovative materials into clinical applications, highlighting the growing promise of granular hydrogels in addressing current limitations in cartilage regeneration.
关节软骨的自我修复能力有限,这促使人们对能够支持组织再生的先进生物材料展开广泛研究。其中,可注射水凝胶因其微创给药方式以及适用于生物打印应用而受到关注。然而,传统的纳米多孔块状水凝胶通常缺乏必要的微孔结构和结构复杂性,无法充分支持有效的组织再生。为克服这些缺点,最近的创新转向了颗粒状水凝胶——通过将水凝胶微粒紧密堆积成有粘性的微孔块状水凝胶制成的可注射材料。这些颗粒系统具有更好的可注射性、卓越的微孔结构,并且能够形成异质生物墨水/可注射材料,能更好地复制天然细胞外基质,从而促进更高效的再生。本综述深入探讨颗粒状水凝胶技术的进展,重点关注水凝胶微粒的制备以及用于将它们组装成颗粒状可注射材料/生物墨水的阻塞策略。它进一步探索了它们在软骨组织修复中的潜力,强调了这种新兴的微孔块状组件在微创手术(MIP)中或作为用于制造患者特异性植入物的智能生物墨水的优势。最后,本综述概述了将这些创新材料转化为临床应用的关键机遇和挑战,突出了颗粒状水凝胶在解决当前软骨再生局限性方面日益增长的前景。