Suppr超能文献

基于机器学习辅助的纳米束X射线衍射对氢化物气相外延生长氮化镓的分析。

Machine learning assisted nanobeam X-ray diffraction based analysis on hydride vapor-phase epitaxy GaN.

作者信息

Wu Zhendong, Hayashi Yusuke, Tohei Tetsuya, Sumitani Kazushi, Imai Yasuhiko, Kimura Shigeru, Sakai Akira

机构信息

Graduate School of Engineering Science Osaka University 1-3 Machikaneyama-cho, Toyonaka Osaka 560-8531 Japan.

National Institute for Materials Science 1-2-1 Sengen Tsukuba Ibaraki305-0047 Japan.

出版信息

J Appl Crystallogr. 2025 Jul 8;58(Pt 4):1205-1219. doi: 10.1107/S1600576725004169. eCollection 2025 Aug 1.

Abstract

Nanobeam X-ray diffraction (nanoXRD) is a powerful tool for collecting crystal structure information with high spatial resolution and data acquisition rate. However, analyzing the enormous amount of data produced by these high-throughput experiments for defect recognition or discovering hidden structural features becomes challenging. Machine learning (ML) methods have become attractive recently due to their outstanding performance in analyzing large data sets. This research utilizes an ML algorithm, uniform manifold approximation and projection (UMAP), to enhance the nanoXRD-based crystal structure analysis of a cross-sectional hydride vapor-phase epitaxy GaN wafer. Compared with the results obtained by conventional fitting, UMAP gives a more precise categorization of crystal structure based on the raw three-dimensional ω-2θ-φ diffraction patterns. The property that UMAP embeds the high-dimensional data while retaining the data structure is valuable in guiding the analysis of nanoXRD profiles. This research also demonstrates the capability of UMAP in analyzing other spectroscopic or diffraction data sets to guide crystal structure investigations.

摘要

纳米束X射线衍射(nanoXRD)是一种强大的工具,可用于以高空间分辨率和数据采集速率收集晶体结构信息。然而,分析这些高通量实验产生的大量数据以进行缺陷识别或发现隐藏的结构特征变得具有挑战性。机器学习(ML)方法由于在分析大型数据集方面的出色表现,最近变得很有吸引力。本研究利用一种ML算法,即均匀流形近似和投影(UMAP),来增强基于nanoXRD的横截面氢化物气相外延GaN晶片的晶体结构分析。与传统拟合得到的结果相比,UMAP基于原始三维ω-2θ-φ衍射图案对晶体结构进行了更精确的分类。UMAP在嵌入高维数据的同时保留数据结构的特性,对于指导nanoXRD图谱分析很有价值。本研究还展示了UMAP在分析其他光谱或衍射数据集以指导晶体结构研究方面的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c34b/12321036/b418724f11e4/j-58-01205-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验