Hamilton Nolan H, Huang Yu-Chen E, McMichael Benjamin D, Love Michael I, Furey Terrence S
Department of Genetics, University of North Carolina at Chapel Hill.
Department of Biology, University of North Carolina at Chapel Hill.
bioRxiv. 2025 Aug 2:2025.02.05.636702. doi: 10.1101/2025.02.05.636702.
We present Consenrich, a simple but principled technique for genome-wide estimation of signals hidden in noisy multi-sample sequencing-based functional genomics datasets. Consenrich appeals to a sequential prediction-correction framework and models both the spatial dependencies between proximal loci and regional, sample-specific noise processes that corrupt sequencing data. Experiments reveal distinct improvement compared to benchmarks in a series of challenging estimation problems, where noisy functional genomics data samples must be reconciled. We further highlight the immediate practical appeal of this refined signal extraction for differential analyses between disease conditions and identification of functionally enriched genomic regions. A complete implementation of Consenrich is hosted at https://github.com/nolan-h-hamilton/Consenrich.
我们介绍了Consenrich,这是一种简单但有原则的技术,用于在基于测序的多样本功能基因组学数据集中全基因组范围内估计隐藏的信号。Consenrich采用了顺序预测校正框架,并对近端位点之间的空间依赖性以及破坏测序数据的区域特异性、样本特异性噪声过程进行建模。实验表明,在一系列具有挑战性的估计问题中,与基准相比有显著改进,在这些问题中,必须协调有噪声的功能基因组学数据样本。我们进一步强调了这种改进的信号提取在疾病状态差异分析和功能富集基因组区域识别方面的直接实际应用价值。Consenrich的完整实现托管在https://github.com/nolan-h-hamilton/Consenrich上。