Suppr超能文献

从多样本功能基因组学数据中进行全基因组不确定性调节的信号注释提取

Genome-Wide Uncertainty-Moderated Extraction of Signal Annotations from Multi-Sample Functional Genomics Data.

作者信息

Hamilton Nolan H, Huang Yu-Chen E, McMichael Benjamin D, Love Michael I, Furey Terrence S

机构信息

Department of Genetics, University of North Carolina at Chapel Hill.

Department of Biology, University of North Carolina at Chapel Hill.

出版信息

bioRxiv. 2025 Aug 2:2025.02.05.636702. doi: 10.1101/2025.02.05.636702.

Abstract

We present Consenrich, a simple but principled technique for genome-wide estimation of signals hidden in noisy multi-sample sequencing-based functional genomics datasets. Consenrich appeals to a sequential prediction-correction framework and models both the spatial dependencies between proximal loci and regional, sample-specific noise processes that corrupt sequencing data. Experiments reveal distinct improvement compared to benchmarks in a series of challenging estimation problems, where noisy functional genomics data samples must be reconciled. We further highlight the immediate practical appeal of this refined signal extraction for differential analyses between disease conditions and identification of functionally enriched genomic regions. A complete implementation of Consenrich is hosted at https://github.com/nolan-h-hamilton/Consenrich.

摘要

我们介绍了Consenrich,这是一种简单但有原则的技术,用于在基于测序的多样本功能基因组学数据集中全基因组范围内估计隐藏的信号。Consenrich采用了顺序预测校正框架,并对近端位点之间的空间依赖性以及破坏测序数据的区域特异性、样本特异性噪声过程进行建模。实验表明,在一系列具有挑战性的估计问题中,与基准相比有显著改进,在这些问题中,必须协调有噪声的功能基因组学数据样本。我们进一步强调了这种改进的信号提取在疾病状态差异分析和功能富集基因组区域识别方面的直接实际应用价值。Consenrich的完整实现托管在https://github.com/nolan-h-hamilton/Consenrich上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf21/12324190/9267de72c7f9/nihpp-2025.02.05.636702v2-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验