Williams C Andrew, Rose Shannon E, Stamenkovic Vera, Smith Stephen E P, Young Jessica E
Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA.
Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.
bioRxiv. 2025 Jul 29:2025.07.28.667194. doi: 10.1101/2025.07.28.667194.
Synaptic dysfunction is an early feature of Alzheimer's disease (AD) and a significant contributor to cognitive decline and neurodegeneration. Proper localization of proteins involved in pre-and post-synaptic composition is dependent on endosomal recycling and trafficking. Alterations in trafficking complexes, such as retromer, have been shown to impair neuronal synaptic function. The gene has been strongly implicated in AD pathogenesis and its protein product, SORLA, is an endosomal receptor that works in conjunction with retromer to regulate endosomal recycling.
We utilized our established human induced pluripotent stem cell (hiPSC) derived excitatory cortical neuron model to examine 's role in synaptic protein composition and neuronal function. We used Quantitative Multiplex co-Immunoprecipitation (QMI), a mesoscale proteomics assay to measure synaptic protein interactions, immunocytochemistry to assay synapses and AMPA receptor subunits, and multi-electrode arrays (MEAs) to measure neuronal function of KO and isogenic control hiPSC derived neurons.
We show that loss of expression significantly changes many synaptic protein-protein interactions and patterns of expression. We demonstrate that deficient neurons are hyperactive and that the increased activity is driven by glutamatergic neurotransmission. Hyperexcitability has been seen in other models of AD with familial AD variants in amyloid precursor protein and presenilin genes, due to the increases in amyloid beta (Aβ) peptides. In the case of deficiency, the hyperexcitability we observe is primarily due to mis-trafficking of synaptic proteins, rather than an overall increase in Aβ. Finally, we find that deficient neurons have impaired synaptic plasticity.
These findings further support a growing body of literature implicating early endosomal recycling defects as drivers of AD pathogenesis. Furthermore, our work supports further emphasis on exploring the SORL1-retromer pathway for therapeutic development in AD.
突触功能障碍是阿尔茨海默病(AD)的早期特征,也是认知衰退和神经退行性变的重要原因。参与突触前和突触后组成的蛋白质的正确定位依赖于内体循环和运输。已表明运输复合物(如逆转录复合物)的改变会损害神经元突触功能。该基因与AD发病机制密切相关,其蛋白质产物SORLA是一种内体受体,与逆转录复合物协同作用以调节内体循环。
我们利用已建立的人诱导多能干细胞(hiPSC)衍生的兴奋性皮质神经元模型来研究其在突触蛋白组成和神经元功能中的作用。我们使用定量多重共免疫沉淀(QMI),一种中尺度蛋白质组学分析方法来测量突触蛋白相互作用,免疫细胞化学来检测突触和AMPA受体亚基,以及多电极阵列(MEA)来测量敲除和同基因对照hiPSC衍生神经元的神经元功能。
我们表明该基因表达缺失会显著改变许多突触蛋白 - 蛋白相互作用和表达模式。我们证明该基因缺陷的神经元过度活跃,且增加的活性由谷氨酸能神经传递驱动。在其他具有淀粉样前体蛋白和早老素基因家族性AD变体的AD模型中也观察到了过度兴奋,这是由于淀粉样β(Aβ)肽的增加。在该基因缺陷的情况下,我们观察到的过度兴奋主要是由于突触蛋白运输错误,而非Aβ的总体增加。最后,我们发现该基因缺陷的神经元具有受损的突触可塑性。
这些发现进一步支持了越来越多的文献表明早期内体循环缺陷是AD发病机制的驱动因素。此外,我们的工作支持进一步强调探索SORL1 - 逆转录复合物途径以用于AD的治疗开发。