Suppr超能文献

用于识别广谱抗病毒药物靶点的新型计算流程

Novel Computational Pipeline to Identify Target Sites for Broad Spectrum Antiviral Drugs.

作者信息

Sears John D, Popov Konstantin I, Sylvester Paul, Dickmander Rebekah, Loome-Diaz Jennifer, Chang Che-Kang, Huff Julia, Sanders Wes, Saba Nicholas A, Sorensen Madeleine, Drobish Adam M, May Nicholas A, Namitz Kevin, Fecko Julia, Arnold Jamie J, Yennawar Neela H, Cameron Craig E, Morrison Thomas E, Tropsha Alexander, Heise Mark T, Moorman Nathaniel J

出版信息

bioRxiv. 2025 Jul 30:2025.07.30.667737. doi: 10.1101/2025.07.30.667737.

Abstract

UNLABELLED

Emerging viruses pose an ongoing threat to human health. While certain viral families are common sources of outbreaks, predicting the specific virus within a family that will cause the next outbreak or pandemic is not possible, creating an urgent need for broad spectrum antiviral drugs that are effective against an array of related viral pathogens. However, broad spectrum drug development is hindered by the lack of detailed knowledge of compound binding sites that are structurally and functionally conserved between viral family members and are essential for virus replication. To overcome this limitation, we developed an in silico approach that combines AI-driven protein structure prediction, computational fragment soaking, multiple sequence alignment, and protein stability calculations to identify highly conserved target sites that are both solvent-accessible and conserved. We applied this approach to the Togaviridae family, which includes emerging pandemic disease threats such as chikungunya and Venezuelan equine encephalitis virus for which there are currently no approved antiviral therapies. Our analysis identified multiple solvent accessible and structurally conserved pockets in the alphavirus non-structural protein 2 (nsP2) protease domain, which is essential for processing of the viral replicase proteins. Mutagenesis of key solvent accessible and conserved residues identified novel pockets that are essential for protease activity and the replication of multiple alphaviruses, validating these pockets as potential antiviral target sites for nsP2 inhibitors. These findings highlight the potential of artificial intelligence-informed modeling for revealing functionally conserved, accessible pockets as a means of identifying potential target binding sites for broadly active direct acting antivirals.

SIGNIFICANCE STATEMENT

Here we present a novel integrative computational approach to identify novel target sites for broadly acting antiviral drugs. We used this technique to identify multiple functionally and structurally conserved protein surface pockets within the alphavirus nsP2 protease and methyl-transferase-like domain. Mutagenesis of these pockets identified that they are essential for protease activity and replication of a genetically diverse group of alphaviruses, validating these sites as potential targets for broadly active small molecule alphavirus inhibitors. This integrative AI-driven approach thus provides an important tool in developing antivirals essential for pandemic preparedness.

摘要

未标注

新兴病毒对人类健康构成持续威胁。虽然某些病毒家族是疫情爆发的常见源头,但预测一个家族中会引发下一次疫情或大流行的具体病毒是不可能的,这迫切需要能有效对抗一系列相关病毒病原体的广谱抗病毒药物。然而,广谱药物研发受到阻碍,因为缺乏对病毒家族成员之间在结构和功能上保守且对病毒复制至关重要的化合物结合位点的详细了解。为克服这一限制,我们开发了一种计算机模拟方法,该方法结合了人工智能驱动的蛋白质结构预测、计算片段浸泡、多序列比对和蛋白质稳定性计算,以识别既易于溶剂接触又保守的高度保守靶位点。我们将此方法应用于披膜病毒科,该病毒科包括新兴的大流行疾病威胁,如基孔肯雅热和委内瑞拉马脑炎病毒,目前尚无针对它们的获批抗病毒疗法。我们的分析在甲病毒非结构蛋白2(nsP2)蛋白酶结构域中确定了多个易于溶剂接触且结构保守的口袋,该结构域对于病毒复制酶蛋白的加工至关重要。对关键的易于溶剂接触且保守的残基进行诱变,确定了对蛋白酶活性和多种甲病毒复制至关重要的新口袋,验证了这些口袋作为nsP2抑制剂潜在抗病毒靶位点的可能性。这些发现凸显了人工智能辅助建模在揭示功能保守、易于接触的口袋以确定广谱活性直接作用抗病毒药物潜在靶结合位点方面的潜力。

意义声明

在此,我们提出一种新颖的综合计算方法来识别广谱抗病毒药物的新靶位点。我们使用该技术在甲病毒nsP2蛋白酶和甲基转移酶样结构域内确定了多个功能和结构保守的蛋白质表面口袋。对这些口袋进行诱变确定它们对一组基因多样的甲病毒的蛋白酶活性和复制至关重要,验证了这些位点作为广谱活性小分子甲病毒抑制剂潜在靶标的可能性。因此,这种综合人工智能驱动方法为开发大流行防范所需的抗病毒药物提供了重要工具。

相似文献

4
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验