Wang Jingjing, Wang Liying, Guo Haibo, Ning Jing, Cao Zhenzhu, Zhang Yongfeng, Cheng Lin, Tong Ziwei, Bai Zhongchao, Wang Nana
College of Chemical Engineering, Inner Mongolia University of Technology, National and Local Joint Engineering Research Centre for High Value Utilization of Coal-Based Solid Waste, Key Laboratory of Resource Circulation at Universities of Inner Mongolia Autonomous Region, Inner Mongolia Key Laboratory of Efficient Cyclic Utilization of Coal-Based Solid Waste, Hohhot, 010051, China.
Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
Angew Chem Int Ed Engl. 2025 Sep 15;64(38):e202505932. doi: 10.1002/anie.202505932. Epub 2025 Aug 6.
Ammonia synthesis is vital for global fertilizer production but traditionally relies on the energy-intensive Haber-Bosch process, a major contributor to CO emissions. Photocatalytic nitrogen reduction reaction (PNRR) offers a sustainable alternative by harnessing solar energy under ambient conditions. However, challenges such as low nitrogen adsorption, poor conductivity, and high electron-hole recombination of the photocatalysts limit their efficiency. This study introduces an FeO@C@ZIF67 core-shell photocatalyst featuring an Fe─N─Co bridged Z-scheme heterojunction. This design incorporates carbon-coated FeO in ZIF67-D (ZIF67-dodecahedron) with exposed (211) crystalline facets to enhance nitrogen adsorption. Fe─N and Co─N active sites improve catalytic activity, while the carbon layer enhances conductivity and facilitates oxygen vacancy formation. The Fe─N─Co bridged heterojunction further promotes charge separation and transfer. Therefore, the FeO@C@ZIF67 composite achieves an outstanding ammonia yield of 33.2 mmol L g h (outperforming other systems) with high selectivity and minimal by-products. This work provides valuable insights into the design of high-performance photocatalysts by integrating the advantages of metal-organic frameworks, core-shell architectures, and interfacial engineering, marking a significant step forward in sustainable ammonia synthesis.
氨合成对全球肥料生产至关重要,但传统上依赖能源密集型的哈伯-博施法,这是碳排放的主要来源。光催化氮还原反应(PNRR)通过在环境条件下利用太阳能提供了一种可持续的替代方案。然而,光催化剂存在诸如低氮吸附、导电性差和高电子-空穴复合等挑战,限制了它们的效率。本研究介绍了一种具有Fe─N─Co桥接Z型异质结的FeO@C@ZIF67核壳光催化剂。这种设计将碳包覆的FeO纳入具有暴露(211)晶面的ZIF67-D(ZIF67-十二面体)中,以增强氮吸附。Fe─N和Co─N活性位点提高了催化活性,而碳层增强了导电性并促进了氧空位的形成。Fe─N─Co桥接异质结进一步促进了电荷分离和转移。因此,FeO@C@ZIF67复合材料实现了33.2 mmol L g h的出色氨产率(优于其他体系),具有高选择性和极少的副产物。这项工作通过整合金属有机框架、核壳结构和界面工程的优势,为高性能光催化剂的设计提供了有价值的见解,标志着可持续氨合成向前迈出了重要一步。