Chen Tian-You, Ying Yi-Ran, Wu Jing, Liu Xuan-He, Huang Hongwei
School of Science, China University of Geosciences (Beijing), Beijing, 100083, China.
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China.
Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202509705. doi: 10.1002/anie.202509705. Epub 2025 Jul 17.
Efficient charge separation and carrier transfer are critical determinants of the performance of photocatalysts for nitrogen reduction reactions (NRR) which are critical for agricultural and chemical industries. In this study, a novel type of heterostructure, termed an "In-Lattice heterojunction", has been constructed by introducing a Fe─N-anchored carbon layer (Fe─N─C) onto the surface of defective TiO (D-TiO), as well as implanting it into the cavities of D-TiO. The in-lattice heterojunction, defined as FNCTO, achieves efficient radial carrier transfer along the Ti─C─N─Fe in-lattice atomic channel and greatly promoted N adsorption benefiting photocatalytic NRR. Thus, FNCTO exhibits an excellent photocatalytic N reduct`ion into NH activity (88 µmol g h), obviously higher than that of Fe─N─C sites on noncavity P25, illustrating the crucial role of cavity patch induced in-lattice heterojunction. This study paves a way for the development of high-performance Fe─N─C atomic photocatalysts based on noncarbon materials.
高效的电荷分离和载流子转移是光催化剂用于氮还原反应(NRR)性能的关键决定因素,而氮还原反应对农业和化学工业至关重要。在本研究中,通过将铁氮锚定碳层(Fe─N─C)引入到缺陷TiO(D-TiO)表面,并将其植入D-TiO的空穴中,构建了一种新型异质结构,称为“晶格内异质结”。定义为FNCTO的晶格内异质结实现了沿Ti─C─N─Fe晶格内原子通道的高效径向载流子转移,并极大地促进了氮吸附,有利于光催化NRR。因此,FNCTO表现出优异的光催化氮还原为NH的活性(88 μmol g h),明显高于非空穴P25上的Fe─N─C位点,说明了空穴补丁诱导的晶格内异质结的关键作用。本研究为基于非碳材料的高性能Fe─N─C原子光催化剂的开发铺平了道路。