Suppr超能文献

铁氮锚定碳层修补的二氧化钛空腔构建“晶格内异质结”用于增强光催化氮还原反应

Fe─N-Anchored Carbon Layer Patched TiO Cavities to Construct an "In-Lattice Heterojunction" for Enhanced Photocatalytic Nitrogen Reduction Reactions.

作者信息

Chen Tian-You, Ying Yi-Ran, Wu Jing, Liu Xuan-He, Huang Hongwei

机构信息

School of Science, China University of Geosciences (Beijing), Beijing, 100083, China.

Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China.

出版信息

Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202509705. doi: 10.1002/anie.202509705. Epub 2025 Jul 17.

Abstract

Efficient charge separation and carrier transfer are critical determinants of the performance of photocatalysts for nitrogen reduction reactions (NRR) which are critical for agricultural and chemical industries. In this study, a novel type of heterostructure, termed an "In-Lattice heterojunction", has been constructed by introducing a Fe─N-anchored carbon layer (Fe─N─C) onto the surface of defective TiO (D-TiO), as well as implanting it into the cavities of D-TiO. The in-lattice heterojunction, defined as FNCTO, achieves efficient radial carrier transfer along the Ti─C─N─Fe in-lattice atomic channel and greatly promoted N adsorption benefiting photocatalytic NRR. Thus, FNCTO exhibits an excellent photocatalytic N reduct`ion into NH activity (88 µmol g h), obviously higher than that of Fe─N─C sites on noncavity P25, illustrating the crucial role of cavity patch induced in-lattice heterojunction. This study paves a way for the development of high-performance Fe─N─C atomic photocatalysts based on noncarbon materials.

摘要

高效的电荷分离和载流子转移是光催化剂用于氮还原反应(NRR)性能的关键决定因素,而氮还原反应对农业和化学工业至关重要。在本研究中,通过将铁氮锚定碳层(Fe─N─C)引入到缺陷TiO(D-TiO)表面,并将其植入D-TiO的空穴中,构建了一种新型异质结构,称为“晶格内异质结”。定义为FNCTO的晶格内异质结实现了沿Ti─C─N─Fe晶格内原子通道的高效径向载流子转移,并极大地促进了氮吸附,有利于光催化NRR。因此,FNCTO表现出优异的光催化氮还原为NH的活性(88 μmol g h),明显高于非空穴P25上的Fe─N─C位点,说明了空穴补丁诱导的晶格内异质结的关键作用。本研究为基于非碳材料的高性能Fe─N─C原子光催化剂的开发铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验