Suppr超能文献

超越1型模式:Brugada综合征的综合风险分层

Beyond the type 1 pattern: comprehensive risk stratification in Brugada syndrome.

作者信息

Kan Kwan Yau, Van Wyk Aléchia, Paterson Toby, Ninan Naveen, Lysyganicz Pawel, Tyagi Ishika, Bhasi Lizi Ravisankar, Boukrid Fayza, Alfaifi Maha, Mishra Alka, Katraj Sai Vamshi Krishna, Pooranachandran Vivetha

机构信息

Department of Natural Sciences, Middlesex University, The Burroughs, London, NW4 4BT, UK.

St George's University Hospitals, London, UK.

出版信息

J Interv Card Electrophysiol. 2025 Aug 6. doi: 10.1007/s10840-025-02101-z.

Abstract

Brugada Syndrome (BrS) is an inherited cardiac ion channelopathy associated with an elevated risk of sudden cardiac death, particularly due to ventricular arrhythmias in structurally normal hearts. Affecting approximately 1 in 2,000 individuals, BrS is most prevalent among middle-aged males of Asian descent. Although diagnosis is based on the presence of a Type 1 electrocardiographic (ECG) pattern, either spontaneous or induced, accurately stratifying risk in asymptomatic and borderline patients remains a major clinical challenge. This review explores current and emerging approaches to BrS risk stratification, focusing on electrocardiographic, electrophysiological, imaging, and computational markers. Non-invasive ECG indicators such as the β-angle, fragmented QRS, S wave in lead I, early repolarisation, aVR sign, and transmural dispersion of repolarisation have demonstrated predictive value for arrhythmic events. Adjunctive tools like signal-averaged ECG, Holter monitoring, and exercise stress testing enhance diagnostic yield by capturing dynamic electrophysiological changes. In parallel, imaging modalities, particularly speckle-tracking echocardiography and cardiac magnetic resonance have revealed subclinical structural abnormalities in the right ventricular outflow tract and atria, challenging the paradigm of BrS as a purely electrical disorder. Invasive electrophysiological studies and substrate mapping have further clarified the anatomical basis of arrhythmogenesis, while risk scoring systems (e.g., Sieira, BRUGADA-RISK, PAT) and machine learning models offer new avenues for personalised risk assessment. Together, these advances underscore the importance of an integrated, multimodal approach to BrS risk stratification. Optimising these strategies is essential to guide implantable cardioverter-defibrillator decisions and improve outcomes in patients vulnerable to life-threatening arrhythmias.

摘要

Brugada综合征(BrS)是一种遗传性心脏离子通道病,与心脏性猝死风险升高相关,尤其是在结构正常的心脏中发生室性心律失常所致。BrS在约每2000人中影响1人,在亚洲裔中年男性中最为常见。尽管诊断基于1型心电图(ECG)模式的存在,无论是自发的还是诱发的,但在无症状和临界患者中准确分层风险仍然是一项重大临床挑战。本综述探讨了BrS风险分层的当前和新兴方法,重点关注心电图、电生理、影像学和计算标志物。诸如β角、碎裂QRS波、I导联S波、早期复极、aVR征和复极跨壁离散度等非侵入性ECG指标已证明对心律失常事件具有预测价值。信号平均心电图、动态心电图监测和运动负荷试验等辅助工具通过捕捉动态电生理变化提高诊断率。与此同时,影像学检查,特别是斑点追踪超声心动图和心脏磁共振成像,已揭示右心室流出道和心房的亚临床结构异常,挑战了BrS作为纯粹电紊乱的范式。侵入性电生理研究和基质标测进一步阐明了心律失常发生的解剖学基础,而风险评分系统(如Sieira、BRUGADA-RISK、PAT)和机器学习模型为个性化风险评估提供了新途径。总之这些进展强调了采用综合、多模态方法进行BrS风险分层的重要性。优化这些策略对于指导植入式心脏复律除颤器的决策以及改善易发生危及生命心律失常患者的预后至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验