Suppr超能文献

经颅电刺激剂量规划中的组优化方法

Group optimization methods for dose planning in tES.

作者信息

Salvador R, Zhou J, Manor B, Ruffini G

机构信息

Neuroelectrics, Barcelona, Spain.

Harvard Medical School, Boston, MA, United States of America.

出版信息

J Neural Eng. 2025 Aug 14;22(4):046045. doi: 10.1088/1741-2552/adf887.

Abstract

Optimizing transcranial electrical stimulation (tES) parameters-including stimulator settings and electrode placements, using magnetic resonance imaging-derived head models is essential for achieving precise electric field (E-field) distributions, enhancing therapeutic efficacy, and reducing inter-individual variability. However, the dependence on individually personalized MRI-based models limits their scalability in some clinical and research contexts. To overcome this limitation, we propose a novel group-level optimization framework employing multiple representative head models.The proposed optimization approach utilizes computational modeling based on multiple representative head models, selected to minimize group-level error compared to baseline (no stimulation). This method effectively balances focal stimulation intensity within targeted brain regions while minimizing off-target effects. We evaluated our method through computational modeling and leave-one-out cross-validation using data from 54 subjects, and analyzed the effectiveness, generalizability, and predictive utility of anatomical characteristics.Group-optimized protocols significantly outperformed standard template-based approaches when within-subject variability was accounted for using paired analyzes. Although average performance differences appeared modest in aggregate comparisons, paired statistical tests revealed that group-based solutions yielded systematically better targeting across participants. Additionally, group protocols consistently reduced the occurrence of poor outcomes observed with some templates. Correlations between anatomical features (e.g. head perimeter and tissue volumes) and E-field parameters revealed predictive relationships. This insight enables further optimization improvements through the strategic selection of representative head models that are electro-anatomically similar to the target subjects. Importantly, this approach eliminates the need forselection of a single representative template, offering a scalable and more flexible alternative when individualized MRI-based models are not available.The proposed group optimization framework provides a scalable and robust alternative to personalized approaches, substantially enhancing the feasibility and accessibility of model-driven tES protocols in diverse clinical and research environments.

摘要

利用磁共振成像衍生的头部模型优化经颅电刺激(tES)参数(包括刺激器设置和电极放置)对于实现精确的电场(E-field)分布、提高治疗效果以及减少个体间差异至关重要。然而,对基于个体个性化MRI模型的依赖限制了它们在某些临床和研究环境中的可扩展性。为了克服这一限制,我们提出了一种采用多个代表性头部模型的新型组水平优化框架。所提出的优化方法利用基于多个代表性头部模型的计算建模,这些模型的选择是为了使与基线(无刺激)相比的组水平误差最小化。该方法有效地平衡了目标脑区内的局部刺激强度,同时将非目标效应降至最低。我们使用来自54名受试者的数据,通过计算建模和留一法交叉验证对我们的方法进行了评估,并分析了解剖特征的有效性、普遍性和预测效用。当使用配对分析考虑受试者内部变异性时,组优化方案显著优于基于标准模板的方法。尽管在总体比较中平均性能差异似乎不大,但配对统计检验表明,基于组的解决方案在所有参与者中产生了系统上更好的靶向性。此外,组方案一致地减少了一些模板中观察到的不良结果的发生。解剖特征(如头围和组织体积)与电场参数之间的相关性揭示了预测关系。这一见解通过策略性选择与目标受试者在电解剖学上相似的代表性头部模型,实现了进一步的优化改进。重要的是,这种方法无需选择单个代表性模板,在无法获得基于个体个性化MRI模型时提供了一种可扩展且更灵活的替代方案。所提出的组优化框架为个性化方法提供了一种可扩展且稳健的替代方案,极大地提高了模型驱动的tES方案在不同临床和研究环境中的可行性和可及性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aecc/12351633/a4b9069b4881/jneadf887f1_hr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验