Salvador R, Zhou J, Manor B, Ruffini G
Neuroelectrics, Barcelona, Spain.
Hebrew SeniorLife Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, United States.
bioRxiv. 2025 Mar 19:2025.03.18.643934. doi: 10.1101/2025.03.18.643934.
Optimizing transcranial electrical stimulation (tES) parameters-including stimulator settings and electrode placements-using magnetic resonance imaging-derived head models is essential for achieving precise electric field (E-field) distributions, enhancing therapeutic efficacy, and reducing inter-individual variability. However, the dependence on individually personalized MRI-based models limits their scalability in some clinical and research contexts. To overcome this limitation, we propose a novel group-level optimization framework employing multiple representative head models.
The proposed optimization approach utilizes computational modeling based on multiple representative head models selected to minimize group-level error compared to baseline (no stimulation). This method effectively balances focal stimulation intensity within targeted brain regions while minimizing off-target effects. We evaluated our method through computational modeling and leave-one-out cross-validation using data from 54 subjects and analyzed the effectiveness, generalizability, and predictive utility of anatomical characteristics.
Our approach demonstrated that group optimization significantly outperformed protocols derived from standard templates or randomly selected individual models, notably reducing variability in outcomes across participants. Additionally, correlations between anatomical features (e.g., head perimeter and tissue volumes) and E-field parameters revealed predictive relationships. This insight enables further optimization improvements through the strategic selection of representative head models that are electro-anatomically similar to the target subjects.
The proposed group optimization framework provides a scalable and robust alternative to personalized approaches, substantially enhancing the feasibility and accessibility of model-driven tES protocols in diverse clinical and research environments.
The data that support the findings of this study are available from the corresponding author, R.S., upon reasonable request.
利用磁共振成像衍生的头部模型优化经颅电刺激(tES)参数,包括刺激器设置和电极放置,对于实现精确的电场(E场)分布、提高治疗效果以及减少个体间差异至关重要。然而,对基于个体个性化MRI模型的依赖在某些临床和研究环境中限制了它们的可扩展性。为了克服这一限制,我们提出了一种采用多个代表性头部模型的新型组水平优化框架。
所提出的优化方法利用基于多个代表性头部模型的计算建模,这些模型的选择是为了使与基线(无刺激)相比的组水平误差最小化。该方法有效地平衡了目标脑区内的焦点刺激强度,同时将脱靶效应降至最低。我们通过计算建模和留一法交叉验证,使用来自54名受试者的数据评估了我们的方法,并分析了解剖特征的有效性、普遍性和预测效用。
我们的方法表明,组优化明显优于从标准模板或随机选择的个体模型得出的方案,显著降低了参与者之间结果的变异性。此外,解剖特征(如头围和组织体积)与E场参数之间的相关性揭示了预测关系。这一见解使得通过战略性地选择与目标受试者在电解剖学上相似的代表性头部模型,能够进一步优化改进。
所提出的组优化框架为个性化方法提供了一种可扩展且稳健的替代方案,大大提高了模型驱动的tES方案在各种临床和研究环境中的可行性和可及性。
支持本研究结果的数据可应合理要求从相应作者R.S.处获取。