Sulaiman Nur Fatin, Gunasekaran Saraswathy Shamini, Zaman Halimah Badioze, Nashruddin Siti Nur Ashakirin Mohd, Nashruddin Siti Nur Aida Mohd, Sofiah A G N, Mubin Mohamad Helmi Abd, Lee Siew Ling
Institute of Informatics and Computing in Energy (IICE), College of Computing and Informatics, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
Faculty Business and Economics, Department Finance, University of Malaya, 50603 Kuala Lumpur, Malaysia.
Bioresour Technol. 2025 Dec;437:133088. doi: 10.1016/j.biortech.2025.133088. Epub 2025 Aug 6.
The global pursuit of sustainable and low-emission energy solutions has made biodiesel as a main focus in renewable energy research. This review explores recent advancements in catalysis for biodiesel production, focusing on the integration of artificial intelligence (AI) techniques and bibliometric analysis. This review outlines the fundamental catalytic systems used in transesterification, emphasizing the functions of homogeneous and heterogeneous catalysts, particularly metal oxide catalysts, and elucidating catalytic reaction mechanisms. This review examines emerging strategies for catalyst design, focusing on nanomaterials, biomass-derived catalysts, and green synthesis methods, as well as their application in the valorization of waste oils within a circular economy framework. Additionally, advances in AI and machine learning are discussed as transformative tools for optimizing reaction parameters, predicting catalyst performance, and enabling intelligent process control. Case studies demonstrate the advantages of AI in process scale-up, catalyst reusability, and real-time decision-making. This study presents a bibliometric analysis from 2005 to May 2025, focusing on publication trends, leading journals, authors, affiliations, and global research contributions. Keyword co-occurrence and thematic mapping further reveal the evolution of research priorities and interdisciplinary connections. Despite significant advancements, challenges remain, especially regarding catalyst deactivation, integration with smart energy systems, and improving the predictive reliability of AI models. This review concludes by proposing future research directions focused on data-driven catalyst design, AI-integrated process monitoring, and sustainability innovation. By integrating bibliometric analysis with critical assessment, this review serves as a strategic resource for researchers seeking to enhance biodiesel technology by integrating catalysis with AI and renewable energy systems.
全球对可持续和低排放能源解决方案的追求使生物柴油成为可再生能源研究的主要焦点。本综述探讨了生物柴油生产催化方面的最新进展,重点关注人工智能(AI)技术与文献计量分析的整合。本综述概述了酯交换反应中使用的基本催化体系,强调了均相和非均相催化剂的功能,特别是金属氧化物催化剂,并阐明了催化反应机理。本综述研究了催化剂设计的新兴策略,重点关注纳米材料、生物质衍生催化剂和绿色合成方法,以及它们在循环经济框架内废油增值中的应用。此外,还讨论了人工智能和机器学习的进展,将其作为优化反应参数、预测催化剂性能和实现智能过程控制的变革性工具。案例研究展示了人工智能在工艺放大、催化剂可重复使用性和实时决策方面的优势。本研究呈现了2005年至2025年5月的文献计量分析,重点关注出版趋势、领先期刊、作者、机构和全球研究贡献。关键词共现和主题映射进一步揭示了研究重点的演变和跨学科联系。尽管取得了重大进展,但挑战依然存在,特别是在催化剂失活、与智能能源系统整合以及提高人工智能模型的预测可靠性方面。本综述最后提出了未来的研究方向,重点是数据驱动的催化剂设计、人工智能集成的过程监测和可持续性创新。通过将文献计量分析与批判性评估相结合,本综述为寻求通过将催化与人工智能和可再生能源系统相结合来提升生物柴油技术的研究人员提供了战略资源。