Suppr超能文献

相似文献

1
Direct conversion of CO to a jet fuel over CoFe alloy catalysts.
Innovation (Camb). 2021 Sep 29;2(4):100170. doi: 10.1016/j.xinn.2021.100170. eCollection 2021 Nov 28.
5
Optimizing carbon efficiency of jet fuel range alkanes from cellulose co-fed with polyethylene via catalytically combined processes.
Bioresour Technol. 2016 Aug;214:45-54. doi: 10.1016/j.biortech.2016.04.086. Epub 2016 Apr 20.
6
Synergistic Catalysis at the Ni/ZrO Interface toward Low-Temperature CO Methanation.
ACS Appl Mater Interfaces. 2023 Apr 19;15(15):19021-19031. doi: 10.1021/acsami.3c01544. Epub 2023 Apr 6.
7
Rh/Al Nanoantenna Photothermal Catalyst for Wide-Spectrum Solar-Driven CO Methanation with Nearly 100% Selectivity.
Nano Lett. 2021 Oct 27;21(20):8824-8830. doi: 10.1021/acs.nanolett.1c03215. Epub 2021 Oct 7.
8
Novel Heterogeneous Catalysts for CO Hydrogenation to Liquid Fuels.
ACS Cent Sci. 2020 Oct 28;6(10):1657-1670. doi: 10.1021/acscentsci.0c00976. Epub 2020 Sep 18.
9
Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst.
Nat Commun. 2020 Dec 22;11(1):6395. doi: 10.1038/s41467-020-20214-z.
10
CO Fixation to Prebiotic Intermediates over Heterogeneous Catalysts.
Acc Chem Res. 2024 Aug 6;57(15):2038-2047. doi: 10.1021/acs.accounts.4c00151. Epub 2024 Jul 18.

引用本文的文献

1
Transformation of CO to C alcohols by tailoring the oxygen bonding via Fe-based tandem catalyst.
Nat Commun. 2025 Aug 6;16(1):7265. doi: 10.1038/s41467-025-62727-5.
4
Electrochemical CO reduction to liquid fuels: Mechanistic pathways and surface/interface engineering of catalysts and electrolytes.
Innovation (Camb). 2025 Jan 17;6(3):100807. doi: 10.1016/j.xinn.2025.100807. eCollection 2025 Mar 3.
5
Structure-reactivity relationships in CO hydrogenation to C chemicals on Fe-based catalysts.
Chem Sci. 2024 Dec 16;16(3):1071-1092. doi: 10.1039/d4sc06376g. eCollection 2025 Jan 15.
6
Potential pathways for CO utilization in sustainable aviation fuel synthesis.
Chem Sci. 2024 Nov 25;16(2):530-551. doi: 10.1039/d4sc06164k. eCollection 2025 Jan 2.
8
Innovative Strategy for Truly Reversible Capture of Polluting Gases-Application to Carbon Dioxide.
Int J Mol Sci. 2023 Nov 17;24(22):16463. doi: 10.3390/ijms242216463.
10
Physical regulation of copper catalyst with a hydrophobic promoter for enhancing CO hydrogenation to methanol.
Innovation (Camb). 2023 May 22;4(4):100445. doi: 10.1016/j.xinn.2023.100445. eCollection 2023 Jul 10.

本文引用的文献

1
Electroreduction of CO in Ionic Liquid-Based Electrolytes.
Innovation (Camb). 2020 Apr 26;1(1):100016. doi: 10.1016/j.xinn.2020.100016. eCollection 2020 May 21.
2
Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst.
Nat Commun. 2020 Dec 22;11(1):6395. doi: 10.1038/s41467-020-20214-z.
3
Novel Heterogeneous Catalysts for CO Hydrogenation to Liquid Fuels.
ACS Cent Sci. 2020 Oct 28;6(10):1657-1670. doi: 10.1021/acscentsci.0c00976. Epub 2020 Sep 18.
4
Highly Selective Olefin Production from CO Hydrogenation on Iron Catalysts: A Subtle Synergy between Manganese and Sodium Additives.
Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21736-21744. doi: 10.1002/anie.202009620. Epub 2020 Sep 24.
5
Synthesis of liquid fuel via direct hydrogenation of CO.
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12654-12659. doi: 10.1073/pnas.1821231116. Epub 2019 Jun 10.
6
Renewable CO recycling and synthetic fuel production in a marine environment.
Proc Natl Acad Sci U S A. 2019 Jun 18;116(25):12212-12219. doi: 10.1073/pnas.1902335116. Epub 2019 Jun 3.
7
The Interplay between Structure and Product Selectivity of CO Hydrogenation.
Angew Chem Int Ed Engl. 2019 Aug 12;58(33):11242-11247. doi: 10.1002/anie.201904649. Epub 2019 Jun 28.
10
Sodium-Containing Spinel Zinc Ferrite as a Catalyst Precursor for the Selective Synthesis of Liquid Hydrocarbon Fuels.
ChemSusChem. 2017 Dec 8;10(23):4764-4770. doi: 10.1002/cssc.201701437. Epub 2017 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验