Suppr超能文献

非小细胞肺癌的综合单细胞转录组数据集。

An integrated single-cell transcriptomic dataset for non-small cell lung cancer.

机构信息

Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea.

Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, 16499, Korea.

出版信息

Sci Data. 2023 Mar 27;10(1):167. doi: 10.1038/s41597-023-02074-6.

Abstract

As single-cell RNA sequencing (scRNA-seq) has emerged as a great tool for studying cellular heterogeneity within the past decade, the number of available scRNA-seq datasets also rapidly increased. However, reuse of such data is often problematic due to a small cohort size, limited cell types, and insufficient information on cell type classification. Here, we present a large integrated scRNA-seq dataset containing 224,611 cells from human primary non-small cell lung cancer (NSCLC) tumors. Using publicly available resources, we pre-processed and integrated seven independent scRNA-seq datasets using an anchor-based approach, with five datasets utilized as reference and the remaining two, as validation. We created two levels of annotation based on cell type-specific markers conserved across the datasets. To demonstrate usability of the integrated dataset, we created annotation predictions for the two validation datasets using our integrated reference. Additionally, we conducted a trajectory analysis on subsets of T cells and lung cancer cells. This integrated data may serve as a resource for studying NSCLC transcriptome at the single cell level.

摘要

单细胞 RNA 测序(scRNA-seq)在过去十年中已成为研究细胞异质性的重要工具,可用的 scRNA-seq 数据集数量也迅速增加。然而,由于样本量小、细胞类型有限以及细胞类型分类的信息不足,此类数据的重复使用通常存在问题。在这里,我们提供了一个包含 224611 个人类原发性非小细胞肺癌(NSCLC)肿瘤细胞的大型综合 scRNA-seq 数据集。使用公开可用的资源,我们采用基于锚点的方法对七个独立的 scRNA-seq 数据集进行了预处理和整合,其中五个数据集用作参考,另外两个数据集用作验证。我们基于跨数据集保守的细胞类型特异性标记物创建了两个注释级别。为了展示整合数据集的可用性,我们使用整合的参考数据集对两个验证数据集进行了注释预测。此外,我们还对 T 细胞和肺癌细胞的亚群进行了轨迹分析。这个整合的数据可能成为在单细胞水平研究 NSCLC 转录组的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0115/10042991/a25cc05fd27e/41597_2023_2074_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验