Cerdeira A E, Lam N N, Hamis S, Docherty P D
Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand.
Division of Systems and Control, Department of Information Technology, Uppsala University, Uppsala, Sweden.
Bull Math Biol. 2025 Aug 6;87(9):122. doi: 10.1007/s11538-025-01497-z.
Mechanical ventilation is a life support system for patients with acute respiratory distress syndrome (ARDS). As part of strategies to protect the lung during ventilation, plateau pressure can be determined via an end-inspiratory pause; however, there is no agreed-upon pause duration in medical protocols. Mechanical ventilation can be modelled using the Viscoelastic model (VEM) for respiration. The identification of static compliance is of clinical interest, as it can be used to estimate plateau pressure. Practical identifiability analysis quantifies the confidence with which model parameters can be estimated from finite, noisy data. This paper evaluates the robustness of plateau pressure estimates in clinical data by analysing practical identifiability of the VEM identified in data with varying durations of end expiratory pauses. Profile likelihood and Hamiltonian Monte Carlo (HMC) simulations were used to determine estimation robustness. The methods were applied to mechanical ventilation data from a previous ARDS study. Profile likelihood and HMC showed strong agreement in both parameter estimates and identifiability results with similar confidence distributions. Both methods demonstrated a loss of parameter robustness that would preclude clinical utility when the end expiratory pause was reduced. By quantifying the confidence in parameter estimation and finding trade-offs in parameters that may be previously unknown when parameters are estimated, the methods give insight into the certainty of the estimate and parameter behaviours, even when the model fits the data well.
机械通气是急性呼吸窘迫综合征(ARDS)患者的生命支持系统。作为通气期间保护肺的策略的一部分,可通过吸气末暂停来确定平台压;然而,医学协议中没有商定的暂停持续时间。机械通气可以使用呼吸粘弹性模型(VEM)进行建模。静态顺应性的识别具有临床意义,因为它可用于估计平台压。实际可识别性分析量化了从有限的噪声数据中估计模型参数的可信度。本文通过分析在具有不同呼气末暂停持续时间的数据中识别出的VEM的实际可识别性,评估了临床数据中平台压估计的稳健性。使用轮廓似然法和哈密顿蒙特卡罗(HMC)模拟来确定估计稳健性。这些方法应用于先前一项ARDS研究的机械通气数据。轮廓似然法和HMC在参数估计和具有相似置信分布的可识别性结果方面显示出高度一致性。当呼气末暂停减少时,两种方法均显示出参数稳健性的丧失,这将排除临床实用性。通过量化参数估计的可信度并在估计参数时发现以前未知的参数权衡,即使模型与数据拟合良好,这些方法也能深入了解估计的确定性和参数行为。