Suppr超能文献

通过基于模型的方法和自动化优化机械通气。

Optimising mechanical ventilation through model-based methods and automation.

作者信息

Morton Sophie E, Knopp Jennifer L, Chase J Geoffrey, Docherty Paul, Howe Sarah L, Möller Knut, Shaw Geoffrey M, Tawhai Merryn

机构信息

Department of Mechanical Engineering, University of Canterbury, New Zealand.

Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany.

出版信息

Annu Rev Control. 2019;48:369-382. doi: 10.1016/j.arcontrol.2019.05.001. Epub 2019 May 7.

Abstract

Mechanical ventilation (MV) is a core life-support therapy for patients suffering from respiratory failure or acute respiratory distress syndrome (ARDS). Respiratory failure is a secondary outcome of a range of injuries and diseases, and results in almost half of all intensive care unit (ICU) patients receiving some form of MV. Funding the increasing demand for ICU is a major issue and MV, in particular, can double the cost per day due to significant patient variability, over-sedation, and the large amount of clinician time required for patient management. Reducing cost in this area requires both a decrease in the average duration of MV by improving care, and a reduction in clinical workload. Both could be achieved by safely automating all or part of MV care via model-based dynamic systems modelling and control methods are ideally suited to address these problems. This paper presents common lung models, and provides a vision for a more automated future and explores predictive capacity of some current models. This vision includes the use of model-based methods to gain real-time insight to patient condition, improve safety through the forward prediction of outcomes to changes in MV, and develop virtual patients for in-silico design and testing of clinical protocols. Finally, the use of dynamic systems models and system identification to guide therapy for improved personalised control of oxygenation and MV therapy in the ICU will be considered. Such methods are a major part of the future of medicine, which includes greater personalisation and predictive capacity to both optimise care and reduce costs. This review thus presents the state of the art in how dynamic systems and control methods can be applied to transform this core area of ICU medicine.

摘要

机械通气(MV)是治疗呼吸衰竭或急性呼吸窘迫综合征(ARDS)患者的核心生命支持疗法。呼吸衰竭是一系列损伤和疾病的次要结果,导致几乎一半的重症监护病房(ICU)患者接受某种形式的机械通气。满足对ICU日益增长的需求的资金是一个主要问题,特别是机械通气,由于患者差异大、过度镇静以及患者管理需要大量临床医生时间,每天的费用可能会翻倍。在这一领域降低成本既需要通过改善护理来缩短机械通气的平均持续时间,也需要减少临床工作量。通过基于模型的动态系统建模和控制方法安全地自动执行全部或部分机械通气护理,这两者都可以实现,这些方法非常适合解决这些问题。本文介绍了常见的肺部模型,并展望了一个更加自动化的未来,探讨了一些当前模型的预测能力。这一愿景包括使用基于模型的方法实时洞察患者状况,通过对机械通气变化的结果进行前瞻性预测来提高安全性,以及开发虚拟患者用于临床方案的计算机模拟设计和测试。最后,将考虑使用动态系统模型和系统识别来指导治疗,以改善ICU中氧合和机械通气治疗的个性化控制。这些方法是医学未来的重要组成部分,包括更大程度的个性化和预测能力,以优化护理并降低成本。因此,本综述介绍了动态系统和控制方法如何应用于变革ICU医学这一核心领域的现状。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验