Liu Jinyang, Wu Yiran, Lian Yulong, Lian Yuzhen, Lin Zhongxi, Cai Hongbing, Huang Zhigao
College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, P. R. China.
Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou 350117, P. R. China.
ACS Appl Mater Interfaces. 2025 Aug 6;17(31):44719-44727. doi: 10.1021/acsami.5c09836. Epub 2025 Jul 26.
The anisotropic/anisotropic mixed-dimensional nanostructures, integrating two-dimensional (2D) materials with other low-dimensional counterparts, can generate a unique quantum phenomenon due to an additional degree of freedom enabling precise control over anisotropy and may provide a fascinating platform for advanced materials and innovative devices. Herein, we report the synthesis of an anisotropic/anisotropic 1D/2D mixed-dimensional homojunction, specifically a 1D/2D MoO mixed-dimensional homojunction, composed of a 1D MoO anisotropic nanowire and a 2D MoO anisotropic nanoplate. This synthesis was achieved in a single step using the space-constrained rapid chemical vapor deposition (s-CVD) method. Four distinct types of the 1D/2D MoO mixed-dimensional homojunctions were successfully synthesized, characterized by specific twisted angles of 0°, 41.5°, 90°, and 138.5° between the nanowire and nanoplate's long diagonal. Angle-resolved polarization Raman spectroscopy (ARPRS) confirms that both the MoO nanowire and nanoplate exhibit strong in-plane anisotropy, with the 1D/2D MoO mixed-dimensional homojunctions demonstrating significantly enhanced anisotropic properties. Furthermore, helicity-resolved Raman spectroscopy (HRRS), supported by theoretical calculations, reveals that the helicity of the 1D/2D MoO mixed-dimensional homojunctions is conserved in A modes and reversed in B modes. Notably, the chiral phonons in these structures are directly visualized through line-scan HRRS. These findings establish an interesting pathway for constructing anisotropic/anisotropic nanostructures by combining two or more anisotropic materials. The insights gained into chiral phonon modes and in-plane anisotropy may provide valuable guidance for the rational design of next-generation anisotropic and chiral optoelectronic devices.
各向异性/各向异性混合维度纳米结构,将二维(2D)材料与其他低维材料相结合,由于具有额外的自由度,能够精确控制各向异性,从而产生独特的量子现象,并可能为先进材料和创新器件提供一个引人入胜的平台。在此,我们报告了一种各向异性/各向异性的一维/二维混合维度同质结的合成,具体为一维/二维MoO混合维度同质结,它由一维MoO各向异性纳米线和二维MoO各向异性纳米片组成。这种合成是通过空间受限的快速化学气相沉积(s-CVD)方法一步实现的。成功合成了四种不同类型的一维/二维MoO混合维度同质结,其特征在于纳米线和纳米片长对角线之间的特定扭曲角度分别为0°、41.5°、90°和138.5°。角分辨偏振拉曼光谱(ARPRS)证实,MoO纳米线和纳米片均表现出强烈的面内各向异性,一维/二维MoO混合维度同质结的各向异性特性显著增强。此外,在理论计算的支持下,螺旋度分辨拉曼光谱(HRRS)表明,一维/二维MoO混合维度同质结的螺旋度在A模式中守恒,在B模式中反转。值得注意的是,通过线扫描HRRS可以直接观察到这些结构中的手性声子。这些发现为通过组合两种或更多种各向异性材料构建各向异性/各向异性纳米结构建立了一条有趣的途径。对手性声子模式和面内各向异性的深入了解可能为下一代各向异性和手性光电器件的合理设计提供有价值的指导。