Dhakal Krishna P, Tran Trang Thu, Lee Taegeon, Choi Wooseon, Peterson Sean F, Marmolejo-Tejada Juan M, Bahng Jaeuk, Lee Daekwon, Dat Vu Khac, Kim Ji-Hee, Lim Seong Chu, Mosquera Martín A, Kim Young-Min, Rho Heesuk, Kim Jeongyong
Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Department of Physics, Research Institute for Materials and Energy Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
Adv Sci (Weinh). 2025 Jun;12(23):e2500411. doi: 10.1002/advs.202500411. Epub 2025 Apr 25.
Stacking monolayers of two-dimensional (2D) transition metal dichalcogenides with different twist angles can provide a way to tune their quantum optical and electronic characteristics. This study demonstrates that the bandgap energy and interlayer coupling strength of twisted bilayer (tBL) ReS can be continuously modulated by the twist angle. By controlling the twist angle between 0° and 10°, the exciton energy of tBL ReS is tuned over a range of 40 meV, which is comparable to the difference between the exciton energies of intrinsic monolayer and bilayer ReS. Such a wide modulation range for the interlayer coupling strength of tBL ReS, which significantly affects the band structure, is also shown by the systematic shift in the low-and high-frequency Raman modes and results of a strain study using scanning transmission electron microscopy imaging. Density functional theory calculations on moiré superlattice tBL ReS structures confirm a consistent increase in the bandgap with the twist angle. The strong modulation of interlayer coupling by the twist angle in tBL ReS is attributed to the low symmetry of the 1T' structure and in-plane anisotropy of the ReS lattice. These findings demonstrate the enhanced tunability of twist-controlled electronic structure in anisotropic 2D materials, offering new pathways for designing reconfigurable quantum materials.
堆叠具有不同扭转角度的二维(2D)过渡金属二硫属化物单层,可以提供一种调节其量子光学和电子特性的方法。本研究表明,扭曲双层(tBL)ReS的带隙能量和层间耦合强度可以通过扭转角度连续调制。通过将扭转角度控制在0°至10°之间,tBL ReS的激子能量在40 meV的范围内被调节,这与本征单层和双层ReS的激子能量之差相当。tBL ReS层间耦合强度的这种宽调制范围,显著影响了能带结构,低频和高频拉曼模式的系统偏移以及使用扫描透射电子显微镜成像的应变研究结果也表明了这一点。对莫尔超晶格tBL ReS结构的密度泛函理论计算证实,带隙随扭转角度一致增加。tBL ReS中扭转角度对层间耦合的强调制归因于1T'结构的低对称性和ReS晶格的面内各向异性。这些发现证明了在各向异性二维材料中扭转控制电子结构的可调性增强,为设计可重构量子材料提供了新途径。