Suppr超能文献

多组学分析揭示了从轻度认知障碍进展到阿尔茨海默病的两种不同轨迹。

Multi-omics profiling reveals two distinct trajectories in the progression from mild cognitive impairment to Alzheimer's disease.

作者信息

Guo Xiayao, Fu Hongwen, Qin Ming, Kan Jiahui

机构信息

State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China.

School of Computer Science and Engineering, Southeast University, Nanjing, China.

出版信息

J Alzheimers Dis. 2025 Oct;107(3):1080-1096. doi: 10.1177/13872877251365210. Epub 2025 Aug 6.

Abstract

BackgroundAlzheimer's disease (AD) exhibits significant clinical and pathological heterogeneity, particularly during the mild cognitive impairment (MCI) transitional stage. Current understanding of the molecular drivers underlying distinct MCI progression trajectories remains incomplete, hindering the development of personalized interventions.ObjectiveThis study aims to integrate transcriptomic, epigenomic, and metabolomic data to identify distinct trajectories in the progression from MCI to AD, and to explore the underlying disease heterogeneity.MethodsWe integrated transcriptomic, epigenomic, and metabolomic data from MCI patients to model the progression to AD and stratified them into subtypes. We then examined molecular differences between MCI and AD within each subtype, identifying key immune microenvironments and regulatory pathways via immune cell infiltration analysis, WGCNA, and GO/KEGG analyses. Finally, we applied Cox regression to identify prognostic biomarkers and built a random forest prognostic model.ResultsOur analysis identified two distinct MCI-to-AD progression subtypes. Subtype 1 was marked by metabolic dysregulation and slower cognitive decline, while Subtype 2 was driven by chronic immune activation and exhibited faster cognitive decline. The trajectory subtypes captured molecular perturbations that were missed by traditional unclustered methods. Prognostic models based on these molecular signatures predicted disease progression over 1-5 years, with AUROC values ranging from 0.851 to 0.893 for Subtype 1 and from 0.878 to 0.927 for Subtype 2.ConclusionsOur findings highlight the importance of multi-omics trajectory stratification in understanding the heterogeneity of AD progression. The identification of two distinct progression trajectories provides insights into the underlying mechanisms of AD.

摘要

背景

阿尔茨海默病(AD)表现出显著的临床和病理异质性,尤其是在轻度认知障碍(MCI)过渡阶段。目前对不同MCI进展轨迹背后分子驱动因素的理解仍不完整,这阻碍了个性化干预措施的开发。

目的

本研究旨在整合转录组学、表观基因组学和代谢组学数据,以识别从MCI进展到AD的不同轨迹,并探索潜在的疾病异质性。

方法

我们整合了MCI患者的转录组学、表观基因组学和代谢组学数据,以模拟向AD的进展并将其分层为不同亚型。然后,我们检查了每个亚型内MCI和AD之间的分子差异,通过免疫细胞浸润分析、加权基因共表达网络分析(WGCNA)和基因本体论/京都基因与基因组百科全书(GO/KEGG)分析确定关键免疫微环境和调控途径。最后,我们应用Cox回归识别预后生物标志物并建立随机森林预后模型。

结果

我们的分析确定了两种不同的从MCI到AD的进展亚型。亚型1的特征是代谢失调和认知衰退较慢,而亚型2由慢性免疫激活驱动,表现出更快的认知衰退。轨迹亚型捕捉到了传统未聚类方法遗漏的分子扰动。基于这些分子特征的预后模型预测了1至5年的疾病进展,亚型1的受试者工作特征曲线下面积(AUROC)值在0.851至0.893之间,亚型2的在0.878至0.927之间。

结论

我们的研究结果突出了多组学轨迹分层在理解AD进展异质性方面的重要性。两种不同进展轨迹的识别为AD的潜在机制提供了见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验