Zhang Yifan, Feng Guangle, He Ting, Yang Min, Lin Jing, Huang Peng
Marshall Laboratory of Biomedical Engineering, International Cancer Center, Shenzhen Key Laboratory of Tumor Visualization Molecular Medicine, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
Research (Wash D C). 2024 Jan 17;7:0277. doi: 10.34133/research.0277. eCollection 2024.
The depth of light penetration and tumor hypoxia restrict the efficacy of photodynamic therapy (PDT) in triple-negative breast cancer (TNBC), while the overproduction of lactate (LA) facilitates the development, aggressiveness, and therapy resistance of TNBC. To address these issues, a self-acting PDT nanosystem (HL@hMnO-LOx@HA) is fabricated by loading 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-alpha (HPPH), luminol, and LA oxidase (LOx) in a hyaluronic acid (HA)-coated hollow manganese dioxide (hMnO) nanoparticle. LOx catalyzes the oxidation of LA into pyruvate and hydrogen peroxide (HO), thus depleting the overproduced intratumoral LA. In the acidic tumor microenvironment, HO reacts with luminol and hMnO to yield blue luminescence as well as O and Mn, respectively. Mn could further enhance this chemiluminescence. HPPH is then excited by the chemiluminescence through chemiluminescence resonance energy transfer for self-illuminated PDT. The generated O alleviates the hypoxia state of the TNBC tumor to produce sufficient O for self-oxygenation PDT. The Mn performs magnetic resonance imaging to trace the self-acting PDT process. This work provides a biocompatible strategy to conquer the limits of light penetration and tumor hypoxia on PDT against TNBC as well as LA overproduction.
光穿透深度和肿瘤缺氧限制了光动力疗法(PDT)在三阴性乳腺癌(TNBC)中的疗效,而乳酸(LA)的过量产生促进了TNBC的发展、侵袭性和治疗抗性。为了解决这些问题,通过将2-(1-己氧基乙基)-2-脱乙烯基焦脱镁叶绿酸-α(HPPH)、鲁米诺和乳酸氧化酶(LOx)负载在透明质酸(HA)包覆的中空二氧化锰(hMnO)纳米颗粒中,制备了一种自作用PDT纳米系统(HL@hMnO-LOx@HA)。LOx催化LA氧化为丙酮酸和过氧化氢(HO),从而消耗肿瘤内过量产生的LA。在酸性肿瘤微环境中,HO分别与鲁米诺和hMnO反应,产生蓝色发光以及O和Mn。Mn可进一步增强这种化学发光。然后,HPPH通过化学发光共振能量转移被化学发光激发,用于自发光PDT。产生的O减轻了TNBC肿瘤的缺氧状态,为自氧合PDT产生足够的O。Mn进行磁共振成像以追踪自作用PDT过程。这项工作提供了一种生物相容性策略,以克服光穿透和肿瘤缺氧对PDT治疗TNBC以及LA过量产生的限制。