文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

工程仿生纳米颗粒实现了针对脑胶质瘤的靶向递送和基于代谢的高效协同治疗。

Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma.

机构信息

Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, P. R. China.

State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

出版信息

Nat Commun. 2022 Jul 21;13(1):4214. doi: 10.1038/s41467-022-31799-y.


DOI:10.1038/s41467-022-31799-y
PMID:35864093
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9304377/
Abstract

Glioblastoma multiforme (GBM) is an aggressive brain cancer with a poor prognosis and few treatment options. Here, building on the observation of elevated lactate (LA) in resected GBM, we develop biomimetic therapeutic nanoparticles (NPs) that deliver agents for LA metabolism-based synergistic therapy. Because our self-assembling NPs are encapsulated in membranes derived from glioma cells, they readily penetrate the blood-brain barrier and target GBM through homotypic recognition. After reaching the tumors, lactate oxidase in the NPs converts LA into pyruvic acid (PA) and hydrogen peroxide (HO). The PA inhibits cancer cell growth by blocking histones expression and inducing cell-cycle arrest. In parallel, the HO reacts with the delivered bis[2,4,5-trichloro-6-(pentyloxycarbonyl)phenyl] oxalate to release energy, which is used by the co-delivered photosensitizer chlorin e6 for the generation of cytotoxic singlet oxygen to kill glioma cells. Such a synergism ensures strong therapeutic effects against both glioma cell-line derived and patient-derived xenograft models.

摘要

多形性胶质母细胞瘤(GBM)是一种侵袭性脑癌,预后较差,治疗选择有限。在这里,我们基于对切除的 GBM 中乳酸(LA)升高的观察,开发了仿生治疗纳米颗粒(NPs),这些 NPs 可提供基于 LA 代谢的协同治疗药物。由于我们的自组装 NPs 被包裹在源自神经胶质瘤细胞的膜中,因此它们可以轻易穿透血脑屏障,并通过同型识别靶向 GBM。到达肿瘤后,NPs 中的乳酸氧化酶将 LA 转化为丙酮酸(PA)和过氧化氢(HO)。PA 通过阻断组蛋白表达和诱导细胞周期停滞来抑制癌细胞生长。同时,HO 与递送的双[2,4,5-三氯-6-(戊氧基羰基)苯基]草酸酯反应,释放能量,供共递送的光敏剂氯代 E6 用于生成细胞毒性单线态氧以杀死神经胶质瘤细胞。这种协同作用确保了对源自神经胶质瘤细胞系和患者来源异种移植模型的强烈治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/b1616129bd2a/41467_2022_31799_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/68e24a83d319/41467_2022_31799_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/ac6b286367b9/41467_2022_31799_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/d047e4029be7/41467_2022_31799_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/d2b6acd403bd/41467_2022_31799_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/856a6c744459/41467_2022_31799_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/0226cb0e8f56/41467_2022_31799_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/b42288c49504/41467_2022_31799_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/b1616129bd2a/41467_2022_31799_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/68e24a83d319/41467_2022_31799_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/ac6b286367b9/41467_2022_31799_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/d047e4029be7/41467_2022_31799_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/d2b6acd403bd/41467_2022_31799_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/856a6c744459/41467_2022_31799_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/0226cb0e8f56/41467_2022_31799_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/b42288c49504/41467_2022_31799_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0a9/9304377/b1616129bd2a/41467_2022_31799_Fig8_HTML.jpg

相似文献

[1]
Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma.

Nat Commun. 2022-7-21

[2]
Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration.

J Neurosurg. 2016-7-15

[3]
Biomimetic Dp44mT-nanoparticles selectively induce apoptosis in Cu-loaded glioblastoma resulting in potent growth inhibition.

Biomaterials. 2022-10

[4]
Transferrin-modified nanoparticles for targeted delivery of Asiatic acid to glioblastoma cells.

Life Sci. 2022-5-1

[5]
Synergistic targeting tenascin C and neuropilin-1 for specific penetration of nanoparticles for anti-glioblastoma treatment.

Biomaterials. 2016-5-24

[6]
Recent Advances in the Use of Lipid-Based Nanoparticles Against Glioblastoma Multiforme.

Arch Immunol Ther Exp (Warsz). 2021-3-27

[7]
Targeted Delivery of Chemo-Sonodynamic Therapy via Brain Targeting, Glutathione-Consumable Polymeric Nanoparticles for Effective Brain Cancer Treatment.

Adv Sci (Weinh). 2022-10

[8]
Overcoming the blood-brain tumor barrier for effective glioblastoma treatment.

Drug Resist Updat. 2015-3-6

[9]
Chlorotoxin modified morusin-PLGA nanoparticles for targeted glioblastoma therapy.

J Mater Chem B. 2019-10-9

[10]
Biomimetic calcium carbonate nanoparticles delivered IL-12 mRNA for targeted glioblastoma sono-immunotherapy by ultrasound-induced necroptosis.

J Nanobiotechnology. 2022-12-10

引用本文的文献

[1]
A biomimetic nanoplatform for multimodal imaging-guided therapy of esophageal cancer via synergistic activation of cuproptosis and ferroptosis.

Mater Today Bio. 2025-8-7

[2]
Ferritin-armed extracellular vesicles with enhanced BBB penetration and tumor-targeting ability for synergistic therapy against glioblastoma.

J Nanobiotechnology. 2025-8-18

[3]
Traceable Lactate-Fueled Self-Acting Photodynamic Therapy against Triple-Negative Breast Cancer.

Research (Wash D C). 2024-1-17

[4]
Cascade reaction-driven biomimetic scintillant/metal-organic frameworks for X-ray triggered combinational therapy against glioma.

Mater Today Bio. 2025-7-11

[5]
In vivo generation of CAR macrophages via the enucleated mesenchymal stem cell delivery system for glioblastoma therapy.

Proc Natl Acad Sci U S A. 2025-7-22

[6]
Nanomedicine-driven tumor glucose metabolic reprogramming for enhanced cancer immunotherapy.

Acta Pharm Sin B. 2025-6

[7]
Recent advances of engineering cell membranes for nanomedicine delivery across the blood-brain barrier.

J Nanobiotechnology. 2025-7-8

[8]
A self-directed Trojanbot-enzymatic nanobot in neutrobot for active target therapy of glioblastoma.

Nat Commun. 2025-6-6

[9]
Patient-derived tumor models and their distinctive applications in personalized drug therapy.

Mechanobiol Med. 2023-8-9

[10]
Single-cell and spatial transcriptomic insights into glioma cellular heterogeneity and metabolic adaptations.

Front Immunol. 2025-4-4

本文引用的文献

[1]
Innovations in 3-Dimensional Tissue Models of Human Brain Physiology and Diseases.

Adv Funct Mater. 2020-10-28

[2]
Altered glycolysis results in drug-resistant in clinical tumor therapy.

Oncol Lett. 2021-5

[3]
Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection.

Nat Nanotechnol. 2021-5

[4]
Self-Activatable Photo-Extracellular Vesicle for Synergistic Trimodal Anticancer Therapy.

Adv Mater. 2021-2

[5]
Metabolic glycan labelling for cancer-targeted therapy.

Nat Chem. 2020-12

[6]
Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment.

Cancers (Basel). 2020-11-3

[7]
Cancer Metabolism: Phenotype, Signaling and Therapeutic Targets.

Cells. 2020-10-16

[8]
Inhibition of Tumor Progression through the Coupling of Bacterial Respiration with Tumor Metabolism.

Angew Chem Int Ed Engl. 2020-11-23

[9]
Patient-derived tumor-like cell clusters for drug testing in cancer therapy.

Sci Transl Med. 2020-6-24

[10]
Near Infrared Fluorescent Nanoplatform for Targeted Intraoperative Resection and Chemotherapeutic Treatment of Glioblastoma.

ACS Nano. 2020-7-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索