Suppr超能文献

非生产性剪接事件的分类与定量

Classification and Quantification of Unproductive Splicing Events.

作者信息

Zavileyskiy L G, Chernyavskaya E A, Vlasenok M A, Pervouchine D D

机构信息

Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia.

出版信息

Acta Naturae. 2025 Apr-Jun;17(2):75-85. doi: 10.32607/actanaturae.27572.

Abstract

In eukaryotic cells, the nonsense-mediated decay (NMD) pathway degrades mRNAs with premature stop codons. The coupling between NMD and alternative splicing (AS) generates NMD-sensitive transcripts (NMD targets, NMDTs) that play an important role in the gene expression regulation via the unproductive splicing mechanism. Understanding this mechanism requires proper identification of NMDT-generating AS events. Here, we developed NMDj, a tool for the identification, classification and quantification of NMDTgenerating AS events which does not rely on the best matching transcript partner principle employed by the existing methods. Instead, NMDj uses a set of characteristic introns that discriminate NMDTs from all protein-coding transcripts. The benchmark on simulated RNA-Seq data demonstrated that NMDj allows to quantify NMDT-generating AS events with better precision compared to other existing methods. NMDj represents a generic method suitable for the accurate classification of arbitrarily complex AS events that generate NMDTs. The NMDj pipeline is available through the repository https://github.com/zavilev/NMDj/.

摘要

在真核细胞中,无义介导的衰变(NMD)途径会降解带有提前终止密码子的mRNA。NMD与可变剪接(AS)之间的偶联会产生对NMD敏感的转录本(NMD靶标,NMDTs),这些转录本通过无效剪接机制在基因表达调控中发挥重要作用。要理解这一机制,需要正确识别产生NMDT的AS事件。在此,我们开发了NMDj,这是一种用于识别、分类和量化产生NMDT的AS事件的工具,它不依赖于现有方法所采用的最佳匹配转录本伙伴原则。相反,NMDj使用一组特征性内含子,将NMDTs与所有蛋白质编码转录本区分开来。对模拟RNA测序数据的基准测试表明,与其他现有方法相比,NMDj能够更精确地量化产生NMDT的AS事件。NMDj是一种通用方法,适用于对产生NMDTs的任意复杂AS事件进行准确分类。可通过存储库https://github.com/zavilev/NMDj/获取NMDj流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37e/12322889/23ec3a438f34/AN20758251-17-02-075-20250803-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验