Ilnitskiy I S, Ryabykh G K, Marakulina D A, Mironov A A, Medvedeva Yu A
Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234 Russia.
Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991 Russia.
Acta Naturae. 2025 Apr-Jun;17(2):98-109. doi: 10.32607/actanaturae.27543.
Long non-coding RNAs (lncRNAs) play a crucial role in the epigenetic regulation of gene expression by recruiting chromatin-modifying proteins to specific genomic loci. Two databases, previously developed by our groups, HiMoRNA and RNA-Chrom, provide valuable insights into this process. The former contains data on epigenetic modification regions (peaks) correlated with lncRNA expression, while the latter offers genome-wide RNA-chromatin interaction data for tens of thousands of RNAs. This study integrated the two resources to generate experimentally supported, interpretable hypotheses regarding lncRNA-mediated epigenetic gene expression regulation. We adapted the web interfaces of HiMoRNA and RNA-Chrom to enable the retrieval of chromatin contacts for each "lncRNA-pigenetic modification-ssociated gene" triad from HiMoRNA, either at specific genomic loci or genome-wide via RNA-Chrom. The integration analysis revealed that for the lncRNAs MALAT1, HOXC-AS2, NEAT1, NR2F1-AS1, PVT1, and MEG3, most HiMoRNA peaks are located within 25 kb of their RNA-Chrom contacts. Further investigation confirmed the RNA-hromatin contacts of MIR31HG and PVT1 lncRNAs, with HiMoRNA peaks for H3K27ac and H3K27me3 marks in the loci of the genes and , respectively, which are known to be regulated by these RNAs. Thus, the integration of HiMoRNA and RNA-Chrom offers a powerful platform to elucidate the role of specific lncRNAs in the regulation of histone modifications at both individual loci and genome-wide levels. We expect this integration to help significantly advance the functional annotation of human lncRNAs.
长链非编码RNA(lncRNAs)通过将染色质修饰蛋白招募到特定的基因组位点,在基因表达的表观遗传调控中发挥关键作用。我们团队之前开发的两个数据库HiMoRNA和RNA-Chrom,为这一过程提供了有价值的见解。前者包含与lncRNA表达相关的表观遗传修饰区域(峰)的数据,而后者提供了数万个RNA的全基因组RNA-染色质相互作用数据。本研究整合了这两种资源,以生成关于lncRNA介导的表观遗传基因表达调控的实验支持的、可解释的假设。我们对HiMoRNA和RNA-Chrom的网络界面进行了调整,以便能够从HiMoRNA中检索每个“lncRNA-表观遗传修饰-相关基因”三联体的染色质接触信息,无论是在特定的基因组位点还是通过RNA-Chrom在全基因组范围内检索。整合分析表明,对于lncRNAs MALAT1、HOXC-AS2、NEAT1、NR2F1-AS1、PVT1和MEG3,大多数HiMoRNA峰位于其RNA-Chrom接触位点的25 kb范围内。进一步的研究证实了MIR31HG和PVT1 lncRNAs的RNA-染色质接触,HiMoRNA峰分别位于已知受这些RNA调控的基因 和 的位点上的H3K27ac和H3K27me3标记处。因此,HiMoRNA和RNA-Chrom的整合提供了一个强大的平台,以阐明特定lncRNAs在个体位点和全基因组水平上对组蛋白修饰调控中的作用。我们期望这种整合将有助于显著推进人类lncRNAs的功能注释。