Eisenhardt Katharina H S, Fiorentini Francesca, Butler Frederica, Thorogood Rosie, Williams Charlotte K
Dept. Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
ACS Catal. 2025 Jul 16;15(15):12959-12983. doi: 10.1021/acscatal.5c02224. eCollection 2025 Aug 1.
Intermetallic synergy can be useful to both enhance catalytic performance and access diverse chemistries, but understanding and predicting the most effective metal combinations remains a challenge. This perspective focuses on a common class of homogeneous heteronuclear catalysts which combine transition metals (M-(II/III)) with Group III, f-, or s-block metals (M'(I-III)) in phenoxy-imine-ether donor ligands. Independent investigations into these heteronuclear complexes across different fields of catalysis, including electrocatalysis, polymerization catalysis, and small-molecule asymmetric catalysis, have all demonstrated the benefits of intermetallic cooperativity. In both electrocatalysis and polymerization catalysis, similar quantified structure-performance relationships, relating catalytic performance to metal Lewis acidity, have been discovered. This selective perspective article focuses on highlighting the most recent insights and quantified structure-activity relationships in electro- and polymerization catalysis. We then apply the insights and methods, developed separately in these two fields of catalysis, to reanalyze previously reported data for catalytic asymmetric organic transformations. The same quantified structure-performance (i.e., activity or selectivity) trends appear to apply in this third field of homogeneous catalysis. These generally applicable, quantified structure-activity relationships apply to related synergistic heterometallic catalysts across all three disparate fields of chemistry this finding is both unexpected and very helpful in providing a clearer understanding of how to design catalysts for successful intermetallic synergy. This perspective highlights both the fundamental understanding of such catalytic synergy and the analytical methods used to investigate it. The objective is to provide a guide for both current and future researchers to measure synergistic interactions and to apply those principles to rational catalyst design.
金属间协同作用对于提高催化性能和实现多种化学反应都可能是有用的,但理解和预测最有效的金属组合仍然是一项挑战。本文观点聚焦于一类常见的均相异核催化剂,这类催化剂在苯氧基亚胺醚供体配体中将过渡金属(M-(II/III))与第III族、f族或s族金属(M'(I-III))结合。在包括电催化、聚合催化和小分子不对称催化在内的不同催化领域对这些异核配合物进行的独立研究,均已证明了金属间协同作用的益处。在电催化和聚合催化中,都发现了将催化性能与金属路易斯酸度相关联的类似定量结构-性能关系。这篇选择性观点文章着重强调了电催化和聚合催化中最新的见解以及定量结构-活性关系。然后,我们应用在这两个催化领域中分别开发的见解和方法,重新分析先前报道的催化不对称有机转化数据。相同的定量结构-性能(即活性或选择性)趋势似乎也适用于均相催化的这第三个领域。这些普遍适用的定量结构-活性关系适用于化学领域中所有三个不同领域的相关协同异金属催化剂——这一发现既出人意料,又非常有助于更清晰地理解如何设计具有成功金属间协同作用的催化剂。本文观点突出了对这种催化协同作用的基本理解以及用于研究它的分析方法。目的是为当前和未来的研究人员提供一个指南,以测量协同相互作用并将这些原理应用于合理的催化剂设计。