Kuno Atsushi, Sakaue Hiroaki, Koizumi Sachiko, Tomioka Azusa, Mizukado Saho, Yamaguchi Yuki, Fukuhara Mitsuko, Tsunaka Yasuo, Kaji Hiroyuki, Uchiyama Susumu
Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan.
Precision System Science Co. Ltd., 88 Kamihongo, Matsudo, Chiba, 271-0064, Japan.
Anal Bioanal Chem. 2025 Aug 7. doi: 10.1007/s00216-025-06042-4.
Accurate glycan analysis of viral vectors is essential for evaluating pharmaceutical quality. Recent advances in mass spectrometry-based analytical technologies have achieved glycosylation detection in adeno-associated viruses (AAVs). However, because only a minor subpopulation (< 1%) of recombinant AAV (rAAV) particles may carry glycans or associate with glycoproteins, distinguishing genuine AAV glycosylation from that of co-purified glycoproteins remains technically challenging, highlighting the need for analytical strategies that minimize glycan misassignment and reliably identify glycoprotein interactions. Here, we present a multimodal glycoproteomic approach to discriminate rare glycosylation events on rAAV capsids from glycosylated host-derived proteins associated with the particles. We employed an ultrasensitive lectin microarray coupled with a broadly reactive anti-AAV antibody to detect O-glycan-binding lectin signals in several rAAV preparations. Notably, a distinct signal was observed for Urtica dioica agglutinin (UDA). Subsequent liquid chromatography-tandem mass spectrometry, combined with UDA-based dual enrichment at both protein and peptide levels, identified a divalently high-mannose N-glycosylated peptide derived from the host AAV receptor (AAVR). Monovalent high-mannose N-glycopeptides of AAVR and Mac-2 binding protein were additionally detected using single-step protein-level enrichment, indicating an avidity-driven UDA binding mechanism. However, no N-glycosylation was detected on the rAAV capsids themselves. These findings underscore the value of integrated multimodal glycoproteomic workflows for resolving low-abundance glycosylated species and offer new insights into host-derived hitchhiker glycoproteins that may affect rAAV characterization and quality control.
准确分析病毒载体的聚糖对于评估药物质量至关重要。基于质谱的分析技术的最新进展已实现对腺相关病毒(AAV)中糖基化的检测。然而,由于只有一小部分重组AAV(rAAV)颗粒(<1%)可能携带聚糖或与糖蛋白结合,因此将真正的AAV糖基化与共纯化糖蛋白的糖基化区分开来在技术上仍然具有挑战性,这突出了需要采用能够尽量减少聚糖错误归属并可靠识别糖蛋白相互作用的分析策略。在此,我们提出一种多模态糖蛋白质组学方法,以区分rAAV衣壳上罕见的糖基化事件与与颗粒相关的糖基化宿主衍生蛋白。我们使用超灵敏凝集素微阵列结合广泛反应的抗AAV抗体来检测几种rAAV制剂中的O-聚糖结合凝集素信号。值得注意的是,荨麻凝集素(UDA)观察到了独特的信号。随后的液相色谱-串联质谱分析,结合在蛋白质和肽水平基于UDA的双重富集,鉴定出一种源自宿主AAV受体(AAVR)的二价高甘露糖N-糖基化肽。使用单步蛋白质水平富集还额外检测到了AAVR和Mac-2结合蛋白的单价高甘露糖N-糖肽,表明存在亲和力驱动的UDA结合机制。然而,在rAAV衣壳本身未检测到N-糖基化。这些发现强调了整合多模态糖蛋白质组学工作流程对于解析低丰度糖基化物种的价值,并为可能影响rAAV表征和质量控制的宿主衍生搭便车糖蛋白提供了新的见解。