Tuan Pham Minh, Horowitz Tatiana, Adel Mouloud, Wojak Julien, Trung Nguyen Linh, Guedj Eric
CNRS, Institut Fresnel, Aix-Marseille université, Marseille, France.
University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
Eur J Nucl Med Mol Imaging. 2025 Aug 7. doi: 10.1007/s00259-025-07462-1.
Connectivity analyses of fluorodeoxyglucose positron emission tomography (FDG-PET) static images provide a valuable means of investigating brain network organization by capturing metabolic activity at rest. Graph theory is emergently applied to model these networks at individual level; however, the choice of graph construction method can significantly impact analytical outcomes.
In this study, we systematically evaluate and compare methods for building individual graphs from FDG-PET images in healthy control subjects. Specifically, we assess five methods, categorized into mean-based graphs and probability density function (PDF)-based graphs, using two criteria: structural similarity between individual and group-level graphs, and their hub topology structure analysis.
Our findings indicate that the Effect Size-based (ES) method best preserves group-level graph structure, achieving 98.9% similarity for the averaged graph while also maintaining around 84% similarity for individual graphs. Among PDF-based approaches, the Wasserstein (WA) method, with its adaptability in PDF-based settings, provides the highest similarity across both averaged (82.5%) and individual (79.1%) graphs, with its adaptive in PDF-settings, making it the most effective for multi-scale network analysis. Meanwhile, Dynamic Time Warping (DTW) captures the highest individual variability, as reflected by its largest variation among individual graphs (11.5%).
This analysis highlights the unique strengths and limitations of each method, emphasizing the critical importance of careful method selection tailored to specific research objectives. Additionally, our study suggests a framework for selecting the appropriate methods, with implications for further both research and clinical applications.
氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)静态图像的连通性分析通过捕捉静息状态下的代谢活动,为研究脑网络组织提供了一种有价值的手段。图论正在被应用于在个体水平上对这些网络进行建模;然而,图构建方法的选择会显著影响分析结果。
在本研究中,我们系统地评估和比较了在健康对照受试者中从FDG-PET图像构建个体图的方法。具体而言,我们使用两个标准评估了五种方法,这些方法分为基于均值的图和基于概率密度函数(PDF)的图:个体图与组水平图之间的结构相似性以及它们的中心拓扑结构分析。
我们的研究结果表明,基于效应大小(ES)的方法能最好地保留组水平图结构,平均图的相似度达到98.9%,同时个体图的相似度也保持在84%左右。在基于PDF的方法中,瓦瑟斯坦(WA)方法在基于PDF的设置中具有适应性,在平均图(82.5%)和个体图(79.1%)中都提供了最高的相似度,其在PDF设置中的适应性使其成为多尺度网络分析最有效的方法。同时,动态时间规整(DTW)捕捉到了最高的个体变异性,这体现在个体图之间的最大差异(11.5%)上。
该分析突出了每种方法的独特优势和局限性,强调了根据特定研究目标仔细选择方法的至关重要性。此外,我们的研究提出了一个选择合适方法的框架,对进一步的研究和临床应用都有启示。