aDepartment of Nuclear Medicine bNeuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universität München, Munich cDepartment of Nuclear Medicine, Universität zu Köln, Cologne, Germany dCognitive Neuroscience Division, Department of Neurology, Columbia University, New York City, New York, USA.
Curr Opin Neurol. 2017 Dec;30(6):677-685. doi: 10.1097/WCO.0000000000000494.
Metabolic connectivity modelling aims to detect functionally interacting brain regions based on PET recordings with the glucose analogue [F]fluorodeoxyglucose (FDG). Here, we outline the most popular metabolic connectivity methods and summarize recent applications in clinical and basic neuroscience.
Metabolic connectivity is modelled by various methods including a seed correlation, sparse inverse covariance estimation, independent component analysis and graph theory. Given its multivariate nature, metabolic connectivity possess added value relative to conventional univariate analyses of FDG-PET data. As such, metabolic connectivity provides valuable insights into pathophysiology and diagnosis of dementing, movement disorders, and epilepsy. Metabolic connectivity can also identify resting state networks resembling patterns of functional connectivity as derived from functional MRI data.
Metabolic connectivity is a valuable concept in the fast-developing field of brain connectivity, at least as reasonable as functional connectivity of functional MRI. So far, the value of metabolic connectivity is best established in neurodegenerative disorders, but studies in other brain diseases as well as in the healthy state are emerging. Growing evidence indicates that metabolic connectivity may serve a marker of normal and pathological cognitive function. A relationship of metabolic connectivity with structural and functional connectivity is yet to be established.
代谢连接建模旨在根据正电子发射断层扫描(PET)记录的葡萄糖类似物 [F]氟脱氧葡萄糖(FDG)来检测功能相互作用的大脑区域。在这里,我们概述了最流行的代谢连接方法,并总结了其在临床和基础神经科学中的最新应用。
代谢连接通过各种方法建模,包括种子相关、稀疏逆协方差估计、独立成分分析和图论。鉴于其多变量性质,代谢连接相对于 FDG-PET 数据的传统单变量分析具有附加价值。因此,代谢连接为痴呆、运动障碍和癫痫的病理生理学和诊断提供了有价值的见解。代谢连接还可以识别静息状态网络,这些网络类似于从功能磁共振成像(fMRI)数据中得出的功能连接模式。
代谢连接是脑连接领域快速发展的一个有价值的概念,至少与功能磁共振成像的功能连接一样合理。到目前为止,代谢连接在神经退行性疾病中的价值得到了最好的证实,但在其他脑部疾病以及健康状态中的研究也在不断涌现。越来越多的证据表明,代谢连接可能是正常和病理认知功能的标志物。代谢连接与结构和功能连接的关系尚未建立。