Suppr超能文献

人类脑结构网络构建的敏感性分析。

Sensitivity analysis of human brain structural network construction.

作者信息

Wei Kuang, Cieslak Matthew, Greene Clint, Grafton Scott T, Carlson Jean M

机构信息

Department of Physics, University of Chicago, Chicago, IL, USA.

Department of Physics, University of California, Santa Barbara, CA, USA.

出版信息

Netw Neurosci. 2017 Dec 1;1(4):446-467. doi: 10.1162/NETN_a_00025. eCollection 2018 Winter.

Abstract

Network neuroscience leverages diffusion-weighted magnetic resonance imaging and tractography to quantify structural connectivity of the human brain. However, scientists and practitioners lack a clear understanding of the effects of varying tractography parameters on the constructed structural networks. With diffusion images from the Human Connectome Project (HCP), we characterize how structural networks are impacted by the spatial resolution of brain atlases, total number of tractography streamlines, and grey matter dilation with various graph metrics. We demonstrate how injudicious combinations of highly refined brain parcellations and low numbers of streamlines may inadvertently lead to disconnected network models with isolated nodes. Furthermore, we provide solutions to significantly reduce the likelihood of generating disconnected networks. In addition, for different tractography parameters, we investigate the distributions of values taken by various graph metrics across the population of HCP subjects. Analyzing the ranks of individual subjects within the graph metric distributions, we find that the ranks of individuals are affected differently by atlas scale changes. Our work serves as a guideline for researchers to optimize the selection of tractography parameters and illustrates how biological characteristics of the brain derived in network neuroscience studies can be affected by the choice of atlas parcellation schemes.

摘要

网络神经科学利用扩散加权磁共振成像和纤维束成像来量化人类大脑的结构连通性。然而,科学家和从业者对不同纤维束成像参数对构建的结构网络的影响缺乏清晰的认识。利用来自人类连接组计划(HCP)的扩散图像,我们通过各种图指标来表征结构网络如何受到脑图谱空间分辨率、纤维束成像流线总数以及灰质扩张的影响。我们展示了高度精细的脑分区和少量流线的不当组合可能会无意中导致具有孤立节点的断开连接的网络模型。此外,我们提供了显著降低生成断开连接网络可能性的解决方案。另外,对于不同的纤维束成像参数,我们研究了各种图指标在HCP受试者群体中的取值分布。通过分析图指标分布中个体受试者的排名,我们发现个体排名受图谱尺度变化的影响各不相同。我们的工作为研究人员优化纤维束成像参数的选择提供了指导,并说明了网络神经科学研究中得出的大脑生物学特征如何受到图谱分区方案选择的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2499/6330233/0167755f1bc8/netn-01-446-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验