Suppr超能文献

癌症基因组图谱转录组TIL免疫特征的泛癌比较分析。

A pan-cancer comparative analysis of the cancer genome atlas transcriptomic TIL-immune signatures.

作者信息

Hitscherich Kyle J, Nousome Darryl, Dinerman Aaron J, Dulemba Victoria, Lowery Frank J, Nilubol Naris

机构信息

Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 112 Kendrick Place, Unit 34, Gaithersburg, Bethesda, MD, 20878, USA.

CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.

出版信息

Cancer Immunol Immunother. 2025 Aug 7;74(9):286. doi: 10.1007/s00262-025-04102-3.

Abstract

Efforts to understand the tumor microenvironment through basic science research and the cancer genome atlas (TCGA) data analysis have led to the creation of unique immune transcriptomic signatures from tumor-infiltrating lymphocytes (TIL). However, no pan-cancer analysis has been conducted to compare the prognostic performance of these signatures using overall survival (OS) or progression-free interval (PFI) as endpoints. We compiled a library of 146 TIL-immune signatures and evaluated gene signature score correlation with OS and PFI for 9,961 available TCGA samples across 33 tumor types. Zhang CD8 TCS demonstrated higher accuracy in prognosticating both OS and PFI across the pan-cancer landscape; however, variability was seen across cancer types and germ cell origin. Cluster analysis compiled a group of six signatures (Oh.Cd8.MAIT, Grog.8KLRB1, Oh.TIL_CD4.GZMK, Grog.CD4.TCF7, Oh.CD8.RPL, Grog.CD4.RPL32) whose association with OS and PFI could potentially be conserved across multiple neoplasms.

摘要

通过基础科学研究和癌症基因组图谱(TCGA)数据分析来了解肿瘤微环境的努力,已促使人们从肿瘤浸润淋巴细胞(TIL)中创建了独特的免疫转录组特征。然而,尚未进行全癌分析以使用总生存期(OS)或无进展生存期(PFI)作为终点来比较这些特征的预后性能。我们编制了一个包含146个TIL免疫特征的文库,并评估了33种肿瘤类型中9961个可用TCGA样本的基因特征评分与OS和PFI的相关性。Zhang CD8 TCS在全癌范围内对OS和PFI进行预后预测时表现出更高的准确性;然而,不同癌症类型和生殖细胞起源之间存在差异。聚类分析汇总了一组六个特征(Oh.Cd8.MAIT、Grog.8KLRB1、Oh.TIL_CD4.GZMK、Grog.CD4.TCF7、Oh.CD8.RPL、Grog.CD4.RPL32),它们与OS和PFI的关联可能在多种肿瘤中具有一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0364/12332167/ed2f6939433b/262_2025_4102_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验