Suppr超能文献

通过使用IOBR 2.0对肿瘤微环境进行多维度解码来加强免疫肿瘤学研究。

Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0.

作者信息

Zeng Dongqiang, Fang Yiran, Qiu Wenjun, Luo Peng, Wang Shixiang, Shen Rongfang, Gu Wenchao, Huang Xiatong, Mao Qianqian, Wang Gaofeng, Lai Yonghong, Rong Guangda, Xu Xi, Shi Min, Wu Zuqiang, Yu Guangchuang, Liao Wangjun

机构信息

Cancer Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, P.R. China; Foshan Key Laboratory of Translational Medicine in Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, P.R. China; Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China.

Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China.

出版信息

Cell Rep Methods. 2024 Dec 16;4(12):100910. doi: 10.1016/j.crmeth.2024.100910. Epub 2024 Dec 2.

Abstract

The use of large transcriptome datasets has greatly improved our understanding of the tumor microenvironment (TME) and helped develop precise immunotherapies. The growing application of multi-omics, single-cell RNA sequencing (scRNA-seq), and spatial transcriptome sequencing has led to many new insights, yet these findings still require clinical validation in large cohorts. To advance multi-omics integration in TME research, we have upgraded the Immuno-Oncology Biological Research (IOBR) package to IOBR 2.0, restructuring and standardizing its analytical workflow. IOBR 2.0 offers six modules for TME analysis based on multi-omics data, including data preprocessing, TME estimation, TME infiltration pattern identification, cellular interaction analysis, genome and TME interaction, and feature visualization, as well as modeling. Additionally, IOBR 2.0 enables constructing gene signatures and reference matrices from scRNA-seq data for TME deconvolution. The user-friendly pipeline provides comprehensive insights into tumor-immune interactions, and a detailed GitBook(https://iobr.github.io/book/) offers a complete manual and analysis guide for each module.

摘要

大型转录组数据集的使用极大地增进了我们对肿瘤微环境(TME)的理解,并有助于开发精准免疫疗法。多组学、单细胞RNA测序(scRNA-seq)和空间转录组测序的应用日益广泛,带来了许多新见解,但这些发现仍需在大型队列中进行临床验证。为推动TME研究中的多组学整合,我们已将免疫肿瘤学生物学研究(IOBR)软件包升级到IOBR 2.0,对其分析工作流程进行了重组和标准化。IOBR 2.0基于多组学数据提供六个用于TME分析的模块,包括数据预处理、TME估计、TME浸润模式识别、细胞间相互作用分析、基因组与TME相互作用、特征可视化以及建模。此外,IOBR 2.0能够从scRNA-seq数据构建基因特征和参考矩阵,用于TME反卷积。这个用户友好的流程提供了对肿瘤-免疫相互作用的全面见解,详细的GitBook(https://iobr.github.io/book/)为每个模块提供了完整的手册和分析指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e1b/11704618/96233295ab27/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验