Aldhahri Eman Ali, Almazroi Abdulwahab Ali, Alkinani Monagi Hassan, Alqarni Mohammed, Alghamdi Elham Abdullah, Ayub Nasir
Computer Science and Artificial Intelligence Department, Collage of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia.
College of Computing and Information Technology at Khulais, Department of Information Technology, University of Jeddah, Jeddah, Saudi Arabia.
PLoS One. 2025 Aug 7;20(8):e0328899. doi: 10.1371/journal.pone.0328899. eCollection 2025.
Logistics networks are becoming increasingly complex and rely more heavily on real-time vehicle data, necessitating intelligent systems to monitor driver behavior and identify route anomalies. Traditional techniques struggle to capture the dynamic spatiotemporal relationships that define driver actions, route deviations, and operational inefficiencies in big fleets. This paper introduces GNN-RMNet, a hybrid deep learning system that combines GNN, ResNet, and MobileNet for interpretable, scalable, and efficient driver behavior profiling and route anomaly detection. GNN-RMNet utilizes spatiotemporal GPS trajectories and vehicle sensor streams to learn contextual and relational patterns from structured driving data in real time, thereby identifying dangerous driving and route violations. On a real-world GPS-vehicle sensor dataset, the proposed model achieves 98% accuracy, 97% recall, an F1-score of 97.5%, and domain-specific measures like Anomaly Detection Precision (96%) and Route Deviation Sensitivity (95%). Modular design offloads ResNet-GNN analytics to edge nodes while preserving MobileNet components for on-vehicle inference, resulting in reduced inference latency (32 ms). Comparing GNN-RMNet against baseline, ensemble, and hybrid models shows its accuracy, efficiency, and generalization advantages. Computational feasibility, anomaly scoring interpretability, and future deployment concerns, including cybersecurity, data privacy, and multimodal sensor integration, are all covered. For real-time fleet safety management and secure, intelligent, and context-aware logistics, GNN-RMNet seems promising. The framework incorporates multimodal, privacy-aware, and scalable driver analytics, enabling its use in intelligent transportation systems and urban logistics infrastructures.
物流网络正变得日益复杂,且对实时车辆数据的依赖程度越来越高,这就需要智能系统来监控驾驶员行为并识别路线异常情况。传统技术难以捕捉定义大型车队中驾驶员行为、路线偏差和运营效率低下的动态时空关系。本文介绍了GNN-RMNet,这是一种混合深度学习系统,它结合了GNN、ResNet和MobileNet,用于可解释、可扩展且高效的驾驶员行为剖析和路线异常检测。GNN-RMNet利用时空GPS轨迹和车辆传感器数据流,从结构化驾驶数据中实时学习上下文和关系模式,从而识别危险驾驶和路线违规行为。在一个真实世界的GPS车辆传感器数据集上,所提出的模型实现了98%的准确率、97%的召回率、97.5%的F1分数,以及诸如异常检测精度(96%)和路线偏差敏感度(95%)等特定领域指标。模块化设计将ResNet-GNN分析卸载到边缘节点,同时保留MobileNet组件用于车载推理,从而降低了推理延迟(32毫秒)。将GNN-RMNet与基线模型、集成模型和混合模型进行比较,显示出其在准确性、效率和泛化方面的优势。本文还涵盖了计算可行性、异常评分可解释性以及未来部署方面的问题,包括网络安全、数据隐私和多模态传感器集成。对于实时车队安全管理以及安全、智能和上下文感知的物流而言,GNN-RMNet似乎很有前景。该框架纳入了多模态、隐私感知且可扩展的驾驶员分析功能,使其能够用于智能交通系统和城市物流基础设施。