Bleichrodt Amanda, Phan Amelia, Luo Ruiyan, Kirpich Alexander, Chowell Gerardo
Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States of America.
Department of Applied Mathematics, Kyung Hee University, Yongin, Korea.
PLoS One. 2025 Aug 7;20(8):e0329791. doi: 10.1371/journal.pone.0329791. eCollection 2025.
Many disciplines, such as public health, rely on statistical time series models for real-time and retrospective forecasting efforts; however, effectively implementing related methods often requires extensive programming knowledge. Therefore, such tools remain largely inaccessible to those with limited programming experience, including students training in modeling, as well as professionals and policymakers seeking to forecast an epidemic's trajectory. To address the need for accessible and intuitive forecasting applications, we present StatModPredict, an R-Shiny dashboard for conducting robust forecasting analysis utilizing auto-regressive integrated moving average (ARIMA), generalized linear models (GLM), generalized additive models (GAM), and Meta's Prophet model.
StatModPredict supports robust real-time forecasting and retrospective model analysis, including fitting, forecasting, evaluation, visualization, and comparison of results from four popular models. After loading an incident time series data set into the interface, users can easily customize model parameters and forecasting options to obtain the desired output. Additionally, StatModPredict offers multiple editable figures for, but not limited to, the time series data, the forecasts, and model fit and forecast metrics. Users can also upload external forecasts produced elsewhere and evaluate their performance alongside the dashboard's built-in models, thereby enabling direct comparisons. We provide a detailed demonstration of the dashboard's features using publicly available annual HIV case data in the US. A video tutorial is available at https://www.youtube.com/watch?v=zgZOvqhvqw8.
By eliminating programming barriers, StatModPredict facilitates exploration and use by students training in forecasting, as well as professionals and policymakers aiming to forecast epidemic trajectories. Additionally, the flexibility in the required input data structure and parameter specification process extends the application of StatModPredict to any discipline that employs time series data. By offering this open-source interface, we aim to broaden access to forecasting tools, promote hands-on learning, and foster contributions from users across disciplines.
许多学科,如公共卫生,在实时和回顾性预测工作中依赖统计时间序列模型;然而,有效实施相关方法通常需要广泛的编程知识。因此,对于编程经验有限的人,包括接受建模培训的学生以及试图预测疫情轨迹的专业人员和政策制定者来说,此类工具在很大程度上仍然无法使用。为满足对易于使用且直观的预测应用程序的需求,我们展示了StatModPredict,这是一个用于利用自回归积分移动平均(ARIMA)、广义线性模型(GLM)、广义相加模型(GAM)和Meta的Prophet模型进行稳健预测分析的R-Shiny仪表板。
StatModPredict支持稳健的实时预测和回顾性模型分析,包括对四种流行模型的结果进行拟合、预测、评估、可视化和比较。将事件时间序列数据集加载到界面后,用户可以轻松自定义模型参数和预测选项以获得所需输出。此外,StatModPredict提供多个可编辑图形,用于但不限于时间序列数据、预测以及模型拟合和预测指标。用户还可以上传在其他地方生成的外部预测,并与仪表板的内置模型一起评估其性能,从而实现直接比较。我们使用美国公开的年度艾滋病毒病例数据详细演示了仪表板的功能。视频教程可在https://www.youtube.com/watch?v=zgZOvqhvqw8获取。
通过消除编程障碍,StatModPredict便于接受预测培训的学生以及旨在预测疫情轨迹的专业人员和政策制定者进行探索和使用。此外,所需输入数据结构和参数指定过程的灵活性将StatModPredict的应用扩展到任何使用时间序列数据的学科。通过提供此开源界面,我们旨在扩大对预测工具的访问,促进实践学习,并促进跨学科用户的贡献。