Bleichrodt Amanda, Luo Ruiyan, Kirpich Alexander, Chowell Gerardo
Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, USA.
R Soc Open Sci. 2024 Jul 3;11(7):240248. doi: 10.1098/rsos.240248. eCollection 2024 Jul.
During the 2022-2023 unprecedented mpox epidemic, near real-time short-term forecasts of the epidemic's trajectory were essential in intervention implementation and guiding policy. However, as case levels have significantly decreased, evaluating model performance is vital to advancing the field of epidemic forecasting. Using laboratory-confirmed mpox case data from the Centers for Disease Control and Prevention and Our World in Data teams, we generated retrospective sequential weekly forecasts for Brazil, Canada, France, Germany, Spain, the United Kingdom, the United States and at the global scale using an auto-regressive integrated moving average (ARIMA) model, generalized additive model, simple linear regression, Facebook's Prophet model, as well as the sub-epidemic wave and -sub-epidemic modelling frameworks. We assessed forecast performance using average mean squared error, mean absolute error, weighted interval scores, 95% prediction interval coverage, skill scores and Winkler scores. Overall, the -sub-epidemic modelling framework outcompeted other models across most locations and forecasting horizons, with the unweighted ensemble model performing best most frequently. The -sub-epidemic and spatial-wave frameworks considerably improved in average forecasting performance relative to the ARIMA model (greater than 10%) for all performance metrics. Findings further support sub-epidemic frameworks for short-term forecasting epidemics of emerging and re-emerging infectious diseases.
在2022 - 2023年史无前例的猴痘疫情期间,对疫情轨迹进行近乎实时的短期预测对于干预措施的实施和政策指导至关重要。然而,随着病例数大幅下降,评估模型性能对于推动疫情预测领域的发展至关重要。我们使用美国疾病控制与预防中心以及“Our World in Data”团队提供的实验室确诊猴痘病例数据,运用自回归积分滑动平均(ARIMA)模型、广义相加模型、简单线性回归、脸书的Prophet模型以及亚流行波和亚流行建模框架,对巴西、加拿大、法国、德国、西班牙、英国、美国以及全球范围生成了回顾性连续每周预测。我们使用平均均方误差、平均绝对误差、加权区间分数、95%预测区间覆盖率、技能分数和温克勒分数来评估预测性能。总体而言,在大多数地点和预测期内,亚流行建模框架比其他模型表现更优,未加权集成模型最常表现最佳。相对于ARIMA模型,亚流行和空间波框架在所有性能指标上的平均预测性能有显著提升(超过10%)。研究结果进一步支持使用亚流行框架对新发和再发传染病疫情进行短期预测。