Suppr超能文献

一种用于短期预测传染病轨迹的集成 n 亚流行模型框架:在美国 COVID-19 大流行中的应用。

An ensemble n-sub-epidemic modeling framework for short-term forecasting epidemic trajectories: Application to the COVID-19 pandemic in the USA.

机构信息

Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, United States of America.

Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2022 Oct 6;18(10):e1010602. doi: 10.1371/journal.pcbi.1010602. eCollection 2022 Oct.

Abstract

We analyze an ensemble of n-sub-epidemic modeling for forecasting the trajectory of epidemics and pandemics. These ensemble modeling approaches, and models that integrate sub-epidemics to capture complex temporal dynamics, have demonstrated powerful forecasting capability. This modeling framework can characterize complex epidemic patterns, including plateaus, epidemic resurgences, and epidemic waves characterized by multiple peaks of different sizes. We systematically assess their calibration and short-term forecasting performance in short-term forecasts for the COVID-19 pandemic in the USA from late April 2020 to late February 2022. We compare their performance with two commonly used statistical ARIMA models. The best fit sub-epidemic model and three ensemble models constructed using the top-ranking sub-epidemic models consistently outperformed the ARIMA models in terms of the weighted interval score (WIS) and the coverage of the 95% prediction interval across the 10-, 20-, and 30-day short-term forecasts. In our 30-day forecasts, the average WIS ranged from 377.6 to 421.3 for the sub-epidemic models, whereas it ranged from 439.29 to 767.05 for the ARIMA models. Across 98 short-term forecasts, the ensemble model incorporating the top four ranking sub-epidemic models (Ensemble(4)) outperformed the (log) ARIMA model 66.3% of the time, and the ARIMA model, 69.4% of the time in 30-day ahead forecasts in terms of the WIS. Ensemble(4) consistently yielded the best performance in terms of the metrics that account for the uncertainty of the predictions. This framework can be readily applied to investigate the spread of epidemics and pandemics beyond COVID-19, as well as other dynamic growth processes found in nature and society that would benefit from short-term predictions.

摘要

我们分析了一组用于预测传染病和大流行轨迹的 n 个子流行模型。这些集成模型方法和集成子流行以捕捉复杂时间动态的模型已证明具有强大的预测能力。该建模框架可以描述复杂的传染病模式,包括高原、传染病反弹以及由不同大小的多个峰值组成的传染病波。我们系统地评估了它们在 2020 年 4 月底至 2022 年 2 月底期间对美国 COVID-19 大流行的短期预测中的校准和短期预测性能。我们将它们的性能与两个常用的统计 ARIMA 模型进行了比较。最佳拟合的子流行模型和使用排名前几位的子流行模型构建的三个集成模型在加权区间得分(WIS)和 95%预测区间的覆盖范围方面始终优于 ARIMA 模型,在 10、20 和 30 天的短期预测中。在我们的 30 天预测中,子流行模型的平均 WIS 范围为 377.6 至 421.3,而 ARIMA 模型的范围为 439.29 至 767.05。在 98 次短期预测中,纳入排名前四位的子流行模型的集成模型(Ensemble(4))在 30 天的预测中,以 WIS 为指标,有 66.3%的时间优于(对数)ARIMA 模型,而 ARIMA 模型有 69.4%的时间优于(对数)ARIMA 模型。在考虑预测不确定性的指标方面,Ensemble(4)始终表现出最佳的性能。该框架可以方便地应用于研究 COVID-19 以外的传染病和大流行的传播,以及自然界和社会中发现的其他受益于短期预测的动态增长过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e2f/9578588/403f4961af51/pcbi.1010602.g001.jpg

相似文献

1
An ensemble n-sub-epidemic modeling framework for short-term forecasting epidemic trajectories: Application to the COVID-19 pandemic in the USA.
PLoS Comput Biol. 2022 Oct 6;18(10):e1010602. doi: 10.1371/journal.pcbi.1010602. eCollection 2022 Oct.
4
A tutorial-based primer and toolbox for fitting and forecasting growth trajectories using the ensemble -sub-epidemic modeling framework.
Infect Dis Model. 2024 Feb 9;9(2):411-436. doi: 10.1016/j.idm.2024.02.001. eCollection 2024 Jun.
8
A novel sub-epidemic modeling framework for short-term forecasting epidemic waves.
BMC Med. 2019 Aug 22;17(1):164. doi: 10.1186/s12916-019-1406-6.

引用本文的文献

1
A network-based model to assess vaccination strategies for the COVID-19 pandemic by using Bayesian optimization.
Chaos Solitons Fractals. 2024 Apr;181. doi: 10.1016/j.chaos.2024.114695. Epub 2024 Mar 14.
2
StatModPredict: A user-friendly R-Shiny interface for fitting and forecasting with statistical models.
PLoS One. 2025 Aug 7;20(8):e0329791. doi: 10.1371/journal.pone.0329791. eCollection 2025.
3
Comparative evaluation of behavioral epidemic models using COVID-19 data.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2421993122. doi: 10.1073/pnas.2421993122. Epub 2025 Jun 12.
5
The future of HIV: challenges in meeting the 2030 Ending the HIV Epidemic in the US (EHE) reduction goal.
AIDS. 2025 May 1;39(6):708-718. doi: 10.1097/QAD.0000000000004122. Epub 2025 Jan 16.
6
The Future of HIV: Challenges in meeting the 2030 reduction goal.
medRxiv. 2025 Jan 6:2025.01.06.25320033. doi: 10.1101/2025.01.06.25320033.
9
Using neural ordinary differential equations to predict complex ecological dynamics from population density data.
J R Soc Interface. 2024 May;21(214):20230604. doi: 10.1098/rsif.2023.0604. Epub 2024 May 15.
10
Dynamic hierarchical state space forecasting.
Stat Med. 2024 Jun 15;43(13):2655-2671. doi: 10.1002/sim.10097. Epub 2024 May 1.

本文引用的文献

1
An ensemble model based on early predictors to forecast COVID-19 health care demand in France.
Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2103302119. doi: 10.1073/pnas.2103302119. Epub 2022 Apr 27.
2
Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States.
Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2113561119. doi: 10.1073/pnas.2113561119. Epub 2022 Apr 8.
3
Interval forecasts of weekly incident and cumulative COVID-19 mortality in the United States: A comparison of combining methods.
PLoS One. 2022 Mar 29;17(3):e0266096. doi: 10.1371/journal.pone.0266096. eCollection 2022.
4
An investigation of spatial-temporal patterns and predictions of the coronavirus 2019 pandemic in Colombia, 2020-2021.
PLoS Negl Trop Dis. 2022 Mar 4;16(3):e0010228. doi: 10.1371/journal.pntd.0010228. eCollection 2022 Mar.
5
Forecasting Covid-19 Transmission with ARIMA and LSTM Techniques in Morocco.
SN Comput Sci. 2022;3(2):133. doi: 10.1007/s42979-022-01019-x. Epub 2022 Jan 14.
7
Recommended reporting items for epidemic forecasting and prediction research: The EPIFORGE 2020 guidelines.
PLoS Med. 2021 Oct 19;18(10):e1003793. doi: 10.1371/journal.pmed.1003793. eCollection 2021 Oct.
8
Model-based ensembles: Lessons learned from retrospective analysis of COVID-19 infection forecasts across 10 countries.
Sci Total Environ. 2022 Feb 1;806(Pt 2):150639. doi: 10.1016/j.scitotenv.2021.150639. Epub 2021 Sep 27.
9
An integrated framework for building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak in New York City.
PLoS Comput Biol. 2021 Sep 8;17(9):e1009334. doi: 10.1371/journal.pcbi.1009334. eCollection 2021 Sep.
10
Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model.
PLoS Comput Biol. 2021 Mar 29;17(3):e1008837. doi: 10.1371/journal.pcbi.1008837. eCollection 2021 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验