使用临床和T1加权MRI数据的多中心3D卷积神经网络用于帕金森病的诊断和预后评估

Multi-Center 3D CNN for Parkinson's disease diagnosis and prognosis using clinical and T1-weighted MRI data.

作者信息

Basaia Silvia, Sarasso Elisabetta, Sciancalepore Francesco, Balestrino Roberta, Musicco Simona, Pisano Stefano, Stankovic Iva, Tomic Aleksandra, Micco Rosita De, Tessitore Alessandro, Salvi Massimo, Meiburger Kristen M, Kostic Vladimir S, Molinari Filippo, Agosta Federica, Filippi Massimo

机构信息

Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.

Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy.

出版信息

Neuroimage Clin. 2025 Aug 5;48:103859. doi: 10.1016/j.nicl.2025.103859.

Abstract

OBJECTIVE

Parkinson's disease (PD) presents challenges in early diagnosis and progression prediction. Recent advancements in machine learning, particularly convolutional-neural-networks (CNNs), show promise in enhancing diagnostic accuracy and prognostic capabilities using neuroimaging data. The aims of this study were: (i) develop a 3D-CNN based on MRI to distinguish controls and PD patients and (ii) employ CNN to predict the progression of PD.

METHODS

Three cohorts were selected: 86 mild, 62 moderate-to-severe PD patients, and 60 controls; 14 mild-PD patients and 14 controls from Parkinson's Progression Markers Initiative database, and 38 de novo mild-PD patients and 38 controls. All participants underwent MRI scans and clinical evaluation at baseline and over 2-years. PD subjects were classified in two clusters of different progression using k-means clustering based on baseline and follow-up UDPRS-III scores. A 3D-CNN was built and tested on PD patients and controls, with binary classifications: controls vs moderate-to-severe PD, controls vs mild-PD, and two clusters of PD progression. The effect of transfer learning was also tested.

RESULTS

CNN effectively differentiated moderate-to-severe PD from controls (74% accuracy) using MRI data alone. Transfer learning significantly improved performance in distinguishing mild-PD from controls (64% accuracy). For predicting disease progression, the model achieved over 70% accuracy by combining MRI and clinical data. Brain regions most influential in the CNN's decisions were visualized.

CONCLUSIONS

CNN, integrating multimodal data and transfer learning, provides encouraging results toward early-stage classification and progression monitoring in PD. Its explainability through activation maps offers potential for clinical application in early diagnosis and personalized monitoring.

摘要

目的

帕金森病(PD)在早期诊断和病情进展预测方面存在挑战。机器学习领域的最新进展,特别是卷积神经网络(CNN),在利用神经影像数据提高诊断准确性和预后能力方面显示出前景。本研究的目的是:(i)基于MRI开发一种3D-CNN,以区分对照组和PD患者;(ii)使用CNN预测PD的病情进展。

方法

选取了三个队列:86例轻度、62例中重度PD患者和60例对照组;从帕金森病进展标志物倡议数据库中选取14例轻度PD患者和14例对照组,以及38例初发轻度PD患者和38例对照组。所有参与者在基线时和两年内接受了MRI扫描和临床评估。根据基线和随访的统一帕金森病评定量表第三部分(UDPRS-III)评分,采用k均值聚类将PD受试者分为两个不同病情进展的类别。构建了一个3D-CNN,并在PD患者和对照组上进行测试,进行二元分类:对照组与中重度PD、对照组与轻度PD,以及PD病情进展的两个类别。还测试了迁移学习的效果。

结果

仅使用MRI数据,CNN就能有效区分中重度PD与对照组(准确率74%)。迁移学习显著提高了区分轻度PD与对照组的性能(准确率64%)。对于预测疾病进展,该模型通过结合MRI和临床数据,准确率超过70%。可视化了在CNN决策中最具影响力脑区。

结论

CNN整合多模态数据和迁移学习,在PD的早期分类和病情进展监测方面取得了令人鼓舞的结果。其通过激活图的可解释性为早期诊断和个性化监测的临床应用提供了潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索