Suppr超能文献

混合纳米尺度系统中光驱动的邻近增强功能调制。

Light-driven modulation of proximity-enhanced functionalities in hybrid nano-scale systems.

作者信息

Benini Mattia, Parlak Umut, Bork Sophie, Strohsack Jaka, Leven Richard, Gutnikov David, Mertens Fabian, Zhukov Evgeny, Rakshit Rajib Kumar, Bergenti Ilaria, Droghetti Andrea, Shumilin Andrei, Mertelj Tomaz, Dediu Valentin Alek, Cinchetti Mirko

机构信息

ISMN-CNR, Via Piero Gobetti 101, 40129, Bologna, Italy.

TU Dortmund University, Otto-Hahn-Straße 4, 44227, Dortmund, Germany.

出版信息

Nat Commun. 2025 Aug 7;16(1):7297. doi: 10.1038/s41467-025-62571-7.

Abstract

Advancing quantum information and communication technology requires smaller and faster components with actively controllable functionalities. This work presents an all-optical strategy for dynamically modulating magnetic properties via proximity effects controlled by light. We demonstrate this concept using hybrid nanoscale systems composed of C₆₀ molecules proximitized to a cobalt metallic ferromagnetic surface, where proximity interactions are particularly strong. Our findings show that by inducing excitons in the C molecules with resonant ultrashort light pulses, we can significantly modify the interaction at the Cobalt/C interface, leading to a remarkable 60% transient shift in the frequency of the Co dipolar ferromagnetic resonance mode. This effect, detected via a specifically designed time-resolved Magneto-Optical Kerr Effect (tr-MOKE) experiment, persists on a timescale of hundreds of picoseconds. Since this frequency shift directly correlates with a transient change in the anisotropy field-an essential parameter for technological applications-our findings establish a new material platform for ultrafast optical control of magnetism at the nanoscale.

摘要

推动量子信息与通信技术发展需要具备主动可控功能的更小、更快的组件。这项工作提出了一种全光策略,通过光控邻近效应来动态调制磁性。我们使用由接近钴金属铁磁表面的C₆₀分子组成的混合纳米系统来演示这一概念,其中邻近相互作用特别强。我们的研究结果表明,通过用共振超短光脉冲在C分子中诱导激子,我们可以显著改变钴/碳界面处的相互作用,导致钴偶极铁磁共振模式的频率出现高达60%的显著瞬态偏移。通过专门设计的时间分辨磁光克尔效应(tr-MOKE)实验检测到的这种效应,在数百皮秒的时间尺度上持续存在。由于这种频移直接与各向异性场的瞬态变化相关——这是技术应用中的一个关键参数——我们的研究结果建立了一个用于纳米级磁性超快光学控制的新型材料平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0db3/12332133/996495f82ee1/41467_2025_62571_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验