Korponay Cole, Cohen-Gilbert Julia E, Cheng You, Kumar Poornima, Harnett Nathaniel G, Medina Adrian A, Forester Brent P, Ressler Kerry J, Demsar Jure, Frederick Blaise B, Beckmann Christian F, Harper David G, Nickerson Lisa D
McLean Imaging Center, McLean Hospital, Belmont, MA, USA.
Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
Commun Biol. 2025 Aug 7;8(1):1176. doi: 10.1038/s42003-025-08543-5.
Emotion processing engages multiple large-scale brain networks. However, prior investigations relying on a priori, contrast-based models of brain activity obscure networks' distinct temporal dynamics and roles in task performance. Here, we performed tensor independent component analysis to identify and track concurrent brain processes, including those with non-canonical dynamics, during the emotional face matching task (EFMT) in healthy young adults (n = 413; n = 416 replication). Ten EFMT-recruited large-scale brain networks were identified, reflecting flexible recoupling of visual association cortex to diverse non-visual networks. These networks collectively engaged 74% of cortex and more strongly explained variability in cognition and a performance-based index of emotion interference than contrast-based amygdala activation/connectivity. Variability in EFMT-recruited network activity was more strongly linked to variability in cognition than affect. Findings reveal a rich landscape of brain activity under the surface of contrast-based fMRI analyses and deepen insights into the distinct brain processes underlying subcomponents of emotional face processing.
情绪加工涉及多个大规模脑网络。然而,以往基于先验的、基于对比的脑活动模型的研究模糊了各网络不同的时间动态以及它们在任务表现中的作用。在此,我们进行了张量独立成分分析,以识别和追踪健康年轻成年人(n = 413;n = 416重复)在情绪面孔匹配任务(EFMT)期间并发的脑过程,包括那些具有非典型动态的过程。识别出了10个由EFMT招募的大规模脑网络,反映了视觉联合皮层与不同非视觉网络的灵活重新耦合。这些网络共同占据了74%的皮层,并且比基于对比的杏仁核激活/连接性更有力地解释了认知变异性和基于表现的情绪干扰指标。由EFMT招募的网络活动变异性与认知变异性的联系比与情感变异性的联系更为紧密。研究结果揭示了基于对比的功能磁共振成像分析表面之下丰富的脑活动图景,并加深了对情绪面孔加工子成分背后不同脑过程的理解。